
A E i i l Ch t i ti fAn Empirical Characterization of
Stream Programs and its Implications g p

for Language and Compiler Design

Bill Thies1 and Saman Amarasinghe2

1 Mi f R h I di1 Microsoft Research India
2 Massachusetts Institute of Technologygy

PACT 2010

What Does it Take to
Evaluate a New Language?Evaluate a New Language?

StreamIt (PACT'10)

AG (LDTA'06)

Contessa (FPT'07)

()

RASCAL (SCAM'09)

AG (LDTA 06)

Anne (PLDI'10)

NDL (LCTES'04)

Teapot (PLDI'96)

UR (PLDI'10)

Facile (PLDI'01)

Teapot (PLDI 96)

10000 2000
0 1000 2000

10000 2000
Lines of Code

What Does it Take to
Evaluate a New Language?Evaluate a New Language?

StreamIt (PACT'10)

AG (LDTA'06)

Contessa (FPT'07)

()
Small studies make it hard to assess:
- Experiences of new users over time

RASCAL (SCAM'09)

AG (LDTA 06) Experiences of new users over time
- Common patterns across large programs

Anne (PLDI'10)

NDL (LCTES'04)

Teapot (PLDI'96)

UR (PLDI'10)

Facile (PLDI'01)

Teapot (PLDI 96)

10000 2000
0 1000 2000

10000 2000
Lines of Code

What Does it Take to
Evaluate a New Language?Evaluate a New Language?

StreamIt (PACT'10)StreamIt (PACT’10)

AG (LDTA'06)

Contessa (FPT'07)

()()

RASCAL (SCAM'09)

AG (LDTA 06)

Anne (PLDI'10)

NDL (LCTES'04)

Teapot (PLDI'96)

UR (PLDI'10)

0 2000 4000 6000 800010000120001400016000180002000022000240002600028000300003200034000

Facile (PLDI'01)

Teapot (PLDI 96)

10K0 20K 30K
Lines of Code

0 2000 4000 6000 80001000012000140001600018000200002200024000260002800030000320003400010K0 20K 30K

What Does it Take to
Evaluate a New Language?Evaluate a New Language?

StreamIt (PACT'10)StreamIt (PACT’10)

AG (LDTA'06)

Contessa (FPT'07)

()()

RASCAL (SCAM'09)

AG (LDTA 06)

Anne (PLDI'10)

NDL (LCTES'04)

Teapot (PLDI'96)

UR (PLDI'10)

0 2000 4000 6000 800010000120001400016000180002000022000240002600028000300003200034000

Facile (PLDI'01)

Teapot (PLDI 96)

10K0 20K 30K
Lines of Code

0 2000 4000 6000 80001000012000140001600018000200002200024000260002800030000320003400010K0 20K 30K

What Does it Take to
Evaluate a New Language?Evaluate a New Language?

StreamIt (PACT'10)StreamIt (PACT’10)

AG (LDTA'06)

Contessa (FPT'07)

()()

Our characterization:
- 65 programs

RASCAL (SCAM'09)

AG (LDTA 06) 65 programs
- 34,000 lines of code
- Written by 22 students

O i d f 8

Anne (PLDI'10)

NDL (LCTES'04) - Over period of 8 years

This allows:

Teapot (PLDI'96)

UR (PLDI'10) - Non-trivial benchmarks
- Broad picture of application space

Understanding long term user

0 2000 4000 6000 800010000120001400016000180002000022000240002600028000300003200034000

Facile (PLDI'01)

Teapot (PLDI 96)

10K0 20K 30K

- Understanding long-term user
experience

Lines of Code
0 2000 4000 6000 80001000012000140001600018000200002200024000260002800030000320003400010K0 20K 30K

Streaming Application Domain
• For programs based on streams of data

Audio video DSP networking and

AtoD

– Audio, video, DSP, networking, and
cryptographic processing kernels

– Examples: HDTV editing, radar

FMDemod

p g,
tracking, microphone arrays, cell
phone base stations, graphics

LPF

Duplicate

LPF LPF
• Properties of stream programs

– Regular and repeating computation

LPF1 LPF2 LPF3

HPF1 HPF2 HPF3
– Independent filters

with explicit communication
RoundRobin

HPF1 HPF2 HPF3

Adder

RoundRobin

Speaker

StreamIt: A Language and Compiler
for Stream Programsfor Stream Programs

• Key idea: design language that enables static analysis• Key idea: design language that enables static analysis

• Goals:
1. Improve programmer productivity in the streaming domain
2. Expose and exploit the parallelism in stream programs

• Project contributions:
– Language design for streaming [CC'02, CAN'02, PPoPP'05, IJPP'05]

– Automatic parallelization [ASPLOS'02, G.Hardware'05, ASPLOS'06, MIT’10]

– Domain-specific optimizations [PLDI'03, CASES'05, MM'08]

– Cache-aware scheduling [LCTES'03, LCTES'05]

– Extracting streams from legacy code [MICRO'07]

– User + application studies [PLDI'05, P-PHEC'05, IPDPS'06]

StreamIt Language Basics
• High-level, architecture-independent language

Backend support for uniprocessors multicores (Raw SMP)– Backend support for uniprocessors, multicores (Raw, SMP),
cluster of workstations

• Model of computation: synchronous dataflow
[Lee &
Messerschmidt,
1987]• Model of computation: synchronous dataflow

– Program is a graph of independent filters
Filters have an atomic execution step

Input
1

x 10

1987]

– Filters have an atomic execution step
with known input / output rates

– Compiler is responsible for Decimate

1
10

x 1p p
scheduling and buffer management

• Extensions to synchronous dataflow O tp t

1
1

x 1Extensions to synchronous dataflow
– Dynamic I/O rates
– Support for sliding window operations

Output x 1

Support for sliding window operations
– Teleport messaging [PPoPP’05]

Example Filter: Low Pass Filter
float->float filter LowPassFilter (int N, float[N] weights;) {

work peek N push 1 pop 1 {
float result = 0;

for (int i=0; i<weights.length; i++) {
result += weights[i] * peek(i);

N

Stateful
g p ()

}
push(result);
pop();

filterStateless
p p();

}
}

Example Filter: Low Pass Filter
float->float filter LowPassFilter (int N

float[N] weights;
) {

work peek N push 1 pop 1 {
float result = 0;

float[N] weights;

h d h l()
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);

Nweights = adaptChannel();

Stateful
g p ()

}
push(result);
pop();

filter
p p();

}
}

Structured Streams

i li

filter • Each structure is single-
input single-output

may be
any StreamIt
language

pipeline input, single-output

• Hierarchical and
composableconstruct

splitjoin
composable

joinersplitter

feedback loopp

joiner splitter

StreamIt Benchmark Suite (1/2)
• Realistic applications (30):

MPEG2 encoder / decoder – Serpent encryption– MPEG2 encoder / decoder
– Ground Moving Target Indicator
– Mosaic

– Serpent encryption
– Vocoder
– RayTracerMosaic

– MP3 subset
– Medium Pulse Compression Radar

RayTracer
– 3GPP physical layer
– Radar Array Front EndMedium Pulse Compression Radar

– JPEG decoder / transcoder
– Feature Aided Tracking

Radar Array Front End
– Freq-hopping radio
– Orthogonal Frequency g

– HDTV
– H264 subset

g q y
Division Multiplexer

– Channel Vocoder

– Synthetic Aperture Radar
– GSM Decoder

– Filterbank
– Target Detector

– 802.11a transmitte
– DES encryption

– FM Radio
– DToA Converter

StreamIt Benchmark Suite (2/2)
• Libraries / kernels (23):

– Autocorrelation – Matrix MultiplicationAutocorrelation
– Cholesky
– CRC

Matrix Multiplication
– Oversampler
– Rate Convert

– DCT (1D / 2D, float / int)
– FFT (4 granularities)

– Time Delay Equalization
– Trellis

– Lattice

• Graphics pipelines (4):
– VectAdd

p p p ()
– Reference pipeline
– Phong shading

– Shadow volumes
– Particle system

• Sorting routines (8)
– Bitonic sort (3 versions) – Insertion sortto c so t (3 e s o s)
– Bubble Sort
– Comparison counting

– Merge sort
– Radix sort

3GPP

802.11a

Bitonic Sort

Note to online viewers:
fFor high-resolution stream graphs of all benchmarks,

please see pp. 173-240 of this thesis:
http://groups csail mit edu/commit/papers/09/thies-phd-thesis pdfhttp://groups.csail.mit.edu/commit/papers/09/thies phd thesis.pdf

Characterization Overview
• Focus on architecture-independent features

Avoid performance artifacts of the StreamIt compiler– Avoid performance artifacts of the StreamIt compiler
– Estimate execution time statically (not perfect)

Th t i f i i• Three categories of inquiry:
1. Throughput bottlenecks
2 S h d li h t i ti2. Scheduling characteristics
3. Utilization of StreamIt language features

Lessons Learned fromLessons Learned from
the StreamIt Languageg g

What we did right
What we did wrong

Opportunities for doing better

1. Expose Task, Data, & Pipeline Parallelism

Data parallelism
• Analogous to DOALL loops

Splitter

Task parallelism

Joiner
Pipeline parallelism

Task

1. Expose Task, Data, & Pipeline Parallelism

Data parallelism
Splitter

Stateless

Splitter

Joiner

ne

Task parallelism

P
ip

el
i

Joiner

Pipeline parallelismData

Task

1. Expose Task, Data, & Pipeline Parallelism

Data parallelism
• 74% of benchmarks contain entirely

data-parallel filters

Splitter

• In other benchmarks, 5% to 96%
(median 71%) of work is data-parallelSplitter

Joiner

ne

Task parallelism
• 82% of benchmarks containP

ip
el

i

at least one splitjoin

• Median of 8 splitjoins per benchmarkJoiner

Pipeline parallelismData

Task

Characterizing Stateful Filters
763 Filter Types 49 Stateful Types

94%
Stateless 55%

A id bl
45%

Al ith i
6%

Stateful

Avoidable
State

Algorithmic
State

Stateful

Sources of Algorithmic State
– MPEG2: bit-alignment, reference frame encoding, motion prediction, …
– HDTV: Pre-coding and Ungerboeck encodingg g g
– HDTV + Trellis: Ungerboeck decoding
– GSM: Feedback loops
– Vocoder: Accumulator adaptive filter feedback loop– Vocoder: Accumulator, adaptive filter, feedback loop
– OFDM: Incremental phase correction
– Graphics pipelines: persistent screen buffers

Characterizing Stateful Filters
27 Types with

763 Filter Types 49 Stateful Types
27 Types with

“Avoidable State”

94%
Stateless 55%

A id bl
45%

Al ith i
Due to

induction
6%

Stateful

Avoidable
State

Algorithmic
State

induction
variables

Stateful

Sources of Algorithmic State
– MPEG2: bit-alignment, reference frame encoding, motion prediction, …
– HDTV: Pre-coding and Ungerboeck encodingg g g
– HDTV + Trellis: Ungerboeck decoding
– GSM: Feedback loops
– Vocoder: Accumulator adaptive filter feedback loop– Vocoder: Accumulator, adaptive filter, feedback loop
– OFDM: Incremental phase correction
– Graphics pipelines: persistent screen buffers

Characterizing Stateful Filters2. Eliminate Stateful Induction Variables
27 Types with

763 Filter Types 49 Stateful Types
27 Types with

“Avoidable State”

94%
Stateless 55%

A id bl
45%

Al ith i
Due to

induction
6%

Stateful

Avoidable
State

Algorithmic
State

induction
variables

Stateful

Sources of Induction Variables
– MPEG encoder: counts frame # to assign picture type
– MPD / Radar: count position in logical vector for FIR– MPD / Radar: count position in logical vector for FIR
– Trellis: noise source flips every N items
– MPEG encoder / MPD: maintain logical 2D position (row/column)
– MPD: reset accumulator when counter overflows

Opportunity: Language primitive to return current iteration?

Characterizing Stateful Filters2. Eliminate Stateful Induction Variables
27 Types with

763 Filter Types 49 Stateful Types
27 Types with

“Avoidable State”

D t94%
Stateless 55%

A id bl
45%

Al ith i
Due to

induction

Due to
Granularity

6%
Stateful

Avoidable
State

Algorithmic
State Due to

message

induction
variables

Stateful
handlers

Sources of Induction Variables
– MPEG encoder: counts frame # to assign picture type
– MPD / Radar: count position in logical vector for FIR– MPD / Radar: count position in logical vector for FIR
– Trellis: noise source flips every N items
– MPEG encoder / MPD: maintain logical 2D position (row/column)
– MPD: reset accumulator when counter overflows

Opportunity: Language primitive to return current iteration?

3. Expose Parallelism in Sliding Windows

0 1 2 3 4 5 6 7 8 9 10 11 input

FIR

• Legacy codes obscure parallelism in sliding windows

output0 1

g y p g
– In von-Neumann languages, modulo functions or copy/shift

operations prevent detection of parallelism in sliding windows

• Sliding windows are prevalent in our benchmark suite
– 57% of realistic applications contain at least one sliding windowpp g
– Programs with sliding windows have 10 instances on average
– Without this parallelism, 11 of our benchmarks would have a p

new throughput bottleneck (work: 3% - 98%, median 8%)

Characterizing Sliding Windows

44%

34 Sliding
Window Types29% 44%

FIR Filters
push 1

One-item
windows push 1

pop 1
peek N

pop N
peek N+1

3GPP, OFDM,
Filterbank,

TargetDetect, DToA,

Mosaic, HDTV, FMRadio,
JPEG decode / transcode,

Vocoder
g , ,
Oversampler,

RateConvert, Vocoder,
ChannelVocoder,

FMRadio

27%
Miscellaneous

FMRadioMP3: reordering (peek >1000)
802.11: error codes (peek 3-7)
Vocoder / A.beam: skip data

Channel Vocoder:
sliding correlation
(peek 100)

4. Expose Startup Behaviors
• Example: difference encoder (JPEG, Vocoder)

int >int filter Diff Encoder() { int >int filter Diff Encoder() {int->int filter Diff_Encoder() {
int state = 0;

work push 1 pop 1 {

int->int filter Diff_Encoder() {

prework push 1 pop 1 {
push(peek(0));work push 1 pop 1 {

push(peek(0) – state);
state = pop();

}

push(peek(0));
}

work push 1 pop 1 peek 2 {}
}

p p p p {
push(peek(1) – peek(0));
pop();

}

Stateful

• Required by 15 programs:
– For delay: MPD, HDTV, Vocoder, 3GPP, Filterbank,

Stateless
}

}

For delay: MPD, HDTV, Vocoder, 3GPP, Filterbank,
DToA, Lattice, Trellis, GSM, CRC

– For picture reordering (MPEG)
– For initialization (MPD, HDTV, 802.11)
– For difference encoder or decoder: JPEG, Vocoder

5. Surprise:
Mis Matched Data Rates UncommonMis-Matched Data Rates Uncommon

1 2 3 2 7 8 7 5

x 147 x 98 x 28 x 32

CD-DAT
benchmark

multiplicitiesx 147 x 98 x 28 x 32 p

Converts CD audio (44.1 kHz) to digital audio tape (48 kHz)

• This is a driving application in many papers
– Eg: [MBL94] [TZB99] [BB00] [BML95] [CBL01] [MB04] [KSB08]
– Due to large filter multiplicities, clever scheduling is

needed to control code size, buffer size, and latency

• But are mis-matched rates common in practice? No!

5. Surprise:
Mis Matched Data Rates UncommonMis-Matched Data Rates Uncommon

Excerpt from Execute once
JPEG transcoder

Execute once
per steady state

Characterizing Mis-Matched Data Rates
• In our benchmark suite:

89% of programs have a filter with a multiplicity of 1– 89% of programs have a filter with a multiplicity of 1
– On average, 63% of filters share the same multiplicity
– For 68% of benchmarks the most common multiplicity is 1For 68% of benchmarks, the most common multiplicity is 1

• Implication for compiler design:
Do not expect advanced buffering strategies toDo not expect advanced buffering strategies to
have a large impact on average programs
– Example: Karczmarek Thies & Amarasinghe LCTES’03Example: Karczmarek, Thies, & Amarasinghe, LCTES 03
– Space saved on CD-DAT: 14x
– Space saved on other programs (median): 1.2xSpace saved on other programs (median): 1.2x

6. Surprise: Multi-Phase Filters
Cause More Harm than Good

• A multi-phase filter divides its execution into many steps

Cause More Harm than Good
A multi phase filter divides its execution into many steps
– Formally known a cyclo-static dataflow
– Possible benefits:

1 2

FF
• Shorter latencies
• More natural code

1 3

Step 1 FF Step 2

• We implemented multi-phase filters, and we regretted it
– Programmers did not understand the difference betweenProgrammers did not understand the difference between

a phase of execution, and a normal function call
– Compiler was complicated by presences of phases

• However, phases proved important for splitters / joiners
– Routing items needs to be done with minimal latencyRouting items needs to be done with minimal latency
– Otherwise buffers grow large, and deadlock in one case (GSM)

7. Programmers Introduce
Unnecessary State in FiltersUnnecessary State in Filters

• Programmers do not implement things how you expect• Programmers do not implement things how you expect

void->int filter SquareWave() {
int x = 0;

void->int filter SquareWave() {
k h 2 { int x = 0;

work push 1 {

work push 2 {
push(0);
push(1);

push(x);
x = 1 - x;

}

push(1);
}

} Stateless }
} Stateful

• Opportunity: add a “stateful” modifier to filter decl?
– Require programmer to be cognizant of the cost of state

8. Leverage and Improve Upon
Structured StreamsStructured Streams

• Overall programmers found itOverall, programmers found it
useful and tractable to write
programs using structured streamsp g g
– Syntax is simple to write, easy to read

• However, structured streams are
occasionally unnaturaly
– And, in rare cases, insufficient

8. Leverage and Improve Upon
Structured StreamsStructured Streams

Original: Structured:Original: Structured:

Compiler recovers unstructured graph
using synchronization removal [Gordon 2010]

8. Leverage and Improve Upon
Structured StreamsStructured Streams

Original: Structured:Original: Structured:

Ch t i ti• Characterization:
– 49% of benchmarks have an Identity node

In those benchmarks Identities account– In those benchmarks, Identities account
for 3% to 86% (median 20%) of instances

O t it• Opportunity:
– Bypass capability (ala GOTO) for streams

Related Work
• Benchmark suites in von-Neumann languages often

include stream programs, but lose high-level propertiesp g , g p p
– MediaBench
– ALPBench

– HandBench
– MiBench

– SPEC
– PARSEC

– Berkeley MM Workload

• Brook language includes 17K LOC benchmark suite

– NetBench – Perfect Club

• Brook language includes 17K LOC benchmark suite
– Brook disallows stateful filters; hence, more data parallelism
– Also more focus on dynamic rates & flexible program behaviorAlso more focus on dynamic rates & flexible program behavior

• Other stream languages lack benchmark characterization
St C / K lC S idl– StreamC / KernelC

– Cg
– Baker
– SPUR

– Spidle

• In-depth analysis of 12 StreamIt “core” benchmarks
published concurrently to this paper [Gordon 2010]

Conclusions
• First characterization of a streaming benchmark suite

that was written in a stream programming languagethat was written in a stream programming language
– 65 programs; 22 programmers; 34 KLOC

Implications for streaming languages and compilers:• Implications for streaming languages and compilers:
– DO: expose task, data, and pipeline parallelism

DO: expose parallelism in sliding windows– DO: expose parallelism in sliding windows
– DO: expose startup behaviors

DO NOT: optimize for unusual case of mis matched I/O rates– DO NOT: optimize for unusual case of mis-matched I/O rates
– DO NOT: bother with multi-phase filters
– TRY: to prevent users from introducing unnecessary stateTRY: to prevent users from introducing unnecessary state
– TRY: to leverage and improve upon structured streams
– TRY: to prevent induction variables from serializing filtersTRY: to prevent induction variables from serializing filters

• Exercise care in generalizing results beyond StreamIt

Acknowledgments:
Authors of the StreamIt BenchmarksAuthors of the StreamIt Benchmarks

• Sitij Agrawal • Ali Melij g
• Basier Aziz
• Jiawen Chen

• Mani Narayanan
• Satish Ramaswamy• Jiawen Chen

• Matthew Drake
Shi l F

• Satish Ramaswamy
• Rodric Rabbah

J i S li• Shirley Fung
• Michael Gordon

• Janis Sermulins
• Magnus Stenemo

• Ola Johnsson
• Andrew Lamb

• Jinwoo Suh
• Zain ul-Abdin

• Chris Leger
• Michal Karczmarek

• Amy Williams
• Jeremy WongMichal Karczmarek

• David Maze
Jeremy Wong

