An Empirical Characterization of
Stream Programs and its Implications
for Language and Compiler Design

Bill Thies! and Saman Amarasinghe?

1 Microsoft Research India

2 Massachusetts Institute of Technology

PACT 2010

What Does It Take to
Evaluate a New Language?

Contessa (FPT'07)
AG (LDTA'06)
RASCAL (SCAM'09)
NDL (LCTES'04)
Anne (PLDI'10)

UR (PLDI'10)
Teapot (PLDI'96)
Facile (PLDI'01)

-

0

1000 2000
Lines of Code

What Does It Take to
Evaluate a New Language?

Contessa (FPT'07)
AG (LDTA'06)
RASCAL (SCAM'09)
NDL (LCTES'04)
Anne (PLDI'10)

UR (PLDI'10)
Teapot (PLDI'96)
Facile (PLDI'01)

-

Small studies make it hard to assess:
- Experiences of new users over time
- Common patterns across large programs

0

1000 2000
Lines of Code

What Does It Take to
Evaluate a New Language?

Contessa (FPT'07)
AG (LDTA'06)
RASCAL (SCAM'09)
NDL (LCTES'04) 1
Anne (PLDI'10) M

UR (PLDI'10) M

Teapot (PLDI'96) M
Facile (PLDI'01)

°n

10K 20K 30K
Lines of Code

What Does It Take to
Evaluate a New Language?

Streamlt (PACT'10)

Contessa (FPT'07)
AG (LDTA'06) I
RASCAL (SCAM'09) I
NDL (LCTES'04) I
Anne (PLDI'10) I
UR (PLDI'10) l
Teapot (PLDI'96) -
Facile (PLDI'01) F

0 10K 20K 30K
Lines of Code

What Does It Take to
Evaluate a New Language?

Streamlt (PACT'10) W

Contessa (FPT'07) | | |Qur characterization:
AG (LDTA'06) | |- 0> programs
- - 34,000 lines of code
RASCAL (SCAM'09) | | |- written by 22 students

NDL (LCTES'04) - Over period of 8 years

Anne (PLDI'10)
- Broad picture of application space

This allows:

Facile (PLDI'01) eXperience

]
»
-
Teapot (PLDI'96) W |- Understanding long-term user
.

[N N
0 10K 20K
Lines of Code

.

———
30K

Streaming Application Domain

 For programs based on streams of data

— Audio, video, DSP, networking, and
cryptographic processing kernels

— Examples: HDTYV editing, radar
tracking, microphone arrays, cell

AtoD

FMDemod

Duplicate

phone base stations, graphics

T

 Properties of stream programs

— Regular and repeating computation [

T

— Independent filters
with explicit communication

00¢ T 100 U |00

RoundRobin

A

dder
L4

Sp

eaker

Streamlt: A Language and Compiler

for Stream Programs

Key idea: design language that enables static analysis

Goals:

1.
2.

Improve programmer productivity in the streaming domain
Expose and exploit the parallelism in stream programs

Project contributions:

Language design for streaming [cC'02, CAN'02, PPoPP'05, 1JPP'05]
Automatic parallelization [AsPLOS'02, G.Hardware'05, ASPLOS'06, MIT'10]
Domain-specific optimizations [PLDI'03, CASES'05, MM'08]
Cache-aware scheduling [LCTES'03, LCTES'05]

Extracting streams from legacy code [micro07]

User + application studies [PLDI'05, P-PHEC'05, IPDPS'06]

Streamlt Language Basics

 High-level, architecture-independent language

— Backend support for uniprocessors, multicores (Raw, SMP),

cluster of workstations [Lee &

_ Messerschmidt,
 Model of computation: synchronous dataflow 1987]

— Program is a graph of independent filters @ % 10
— Filters have an atomic execution step 1
with known input / output rates 410

— Compiler is responsible for [Decimate] x1
scheduling and buffer management i

« Extensions to synchronous dataflow [Ou:put] X 1

— Dynamic I/O rates
— Support for sliding window operations
— Teleport messaging [PPoPP’05]

Example Filter: Low Pass Filter

float->float filter (int N, float[N] weights) {
O
work peek N push 1 pop 1 { O
float = 0; 8
N+ @)
for (int i=0; iI<weights.length; i++) { X
result += weights[i] * peek(i); v
} fiter |
Sush(result): Stateless | filter
Pop(); O

Example Filter: Low Pass Filter

float->float filter (int N) {
float[N] weights; O
work peek N push 1 pop 1 { O
float = 0; (8
weights = adaptChannel(); N <)
for (int 1=0; i<weights.length; i++) { X
result += weights[i] * peek(i); v
gush (result): Stateful [filter]
pop(); O

¥
¥

Structured Streams

filter — —
pipeline
) maybe
> > _’[any Streamlt
language
construct
splitjoin

_

SN

*[splitter |—

j—* joiner |

n g

feedback loop

s

[
»

joiner |—

A

:]——»[splitter |—>

) y

Each structure is single-
Input, single-output

Hierarchical and
composable

Streamlt Benchmark Suite (1/2)

* Realistic applications (30):
— MPEG2 encoder / decoder
— Ground Moving Target Indicator
— Mosaic
— MP3 subset
— Medium Pulse Compression Radar
— JPEG decoder / transcoder
— Feature Aided Tracking
— HDTV
— H264 subset
— Synthetic Aperture Radar
— GSM Decoder
— 802.11a transmitte
— DES encryption

— Serpent encryption

— Vocoder

— RayTracer

— 3GPP physical layer

— Radar Array Front End

— Freqg-hopping radio

— Orthogonal Frequency
Division Multiplexer

— Channel Vocoder
— Filterbank

— Target Detector
— FM Radio

— DToA Converter

Streamlt Benchmark Suite (2/2)

e Libraries / kernels (23):

— Autocorrelation — Matrix Multiplication
— Cholesky — Oversampler
— CRC — Rate Convert
— DCT (1D / 2D, float / int) — Time Delay Equalization
— FFT (4 granularities) — Trellis
— Lattice — VectAdd
o Graphics pipelines (4):
— Reference pipeline — Shadow volumes
— Phong shading — Particle system

e Sorting routines (8)
— Bitonic sort (3 versions) — Insertion sort
— Bubble Sort — Merge sort
— Comparison counting — Radix sort

802.11a

Bitonic Sort

e
=i
csceceie
—=Ge=g=
e

G -gq b“.“. ==

N

cdemaaie

Note to online viewers:
For high-resolution stream graphs of all benchmarks,
please see pp. 173-240 of this thesis:

Characterization Overview

 Focus on architecture-independent features
— Avoid performance artifacts of the Streamit compiler
— Estimate execution time statically (not perfect)

 Three categories of inquiry:
1. Throughput bottlenecks
2. Scheduling characteristics
3. Utilization of Streamit language features

Lessons Learned from
the Streamlt Language

What we did right
What we did wrong
Opportunities for doing better

1. Expose Task, Data, & Pipeline Parallelism

v

Splitter

Task parallelism

Joiner

Task

1. Expose Task, Data, & Pipeline Parallelism

Data parallelism
Splitter

E) Stateless
@ Splitter
g Task parallelism
S

Data Pipeline parallelism
!
Task

. Expose Task, Data, & Pipeline Parallelism

Data parallelism

* 74% of benchmarks contain entirely
data-parallel filters

 |In other benchmarks, 5% to 96%

. Splitter (median 71%) of work is data-parallel
c
:?‘:i Task parallelism
* o 82% of benchmarks contain
at least one splitjoin
Joiner Median of 8 splitjoins per benchmark
Data Pipeline parallelism

Task

Characterizing Stateful Filters

763 Filter Types 49 Stateful Types

94%
Stateless

A\[s[elgiialanlle Avoidable

Stateful

Sources of Algorithmic State
MPEG2: bit-alignment, reference frame encoding, motion prediction, ...
HDTV: Pre-coding and Ungerboeck encoding
HDTV + Trellis: Ungerboeck decoding

GSM: Feedback loops

Vocoder: Accumulator, adaptive filter, feedback loop
OFDM: Incremental phase correction

Graphics pipelines: persistent screen buffers

Characterizing Stateful Filters

27 Types with
763 Filter Types 49 Stateful Types “Avoidable State”

94%
Stateless

Induction
variables

A\[s[elgiialanlle Avoidable

Stateful

Sources of Algorithmic State
MPEG2: bit-alignment, reference frame encoding, motion prediction, ...
HDTV: Pre-coding and Ungerboeck encoding
HDTV + Trellis: Ungerboeck decoding

GSM: Feedback loops

Vocoder: Accumulator, adaptive filter, feedback loop
OFDM: Incremental phase correction

Graphics pipelines: persistent screen buffers

2. Eliminate Stateful Induction Variables

27 Types with
763 Filter Types 49 Stateful Types “Avoidable State”

94%
Stateless

Induction
variables

A\[s[elgiialanlle Avoidable

Stateful

Sources of Induction Variables
MPEG encoder: counts frame # to assign picture type
MPD / Radar: count position in logical vector for FIR

Trellis: noise source flips every N items
MPEG encoder / MPD: maintain logical 2D position (row/column)
MPD: reset accumulator when counter overflows

Opportunity: Language primitive to return current iteration?

2. Eliminate Stateful Induction Variables

27 Types with
763 Filter Types 49 Stateful Types “Avoidable State”

94%
Stateless

Stateful

Sources of Induction Variables
MPEG encoder: counts frame # to assign picture type
MPD / Radar: count position in logical vector for FIR

Trellis: noise source flips every N items
MPEG encoder / MPD: maintain logical 2D position (row/column)
MPD: reset accumulator when counter overflows

Opportunity: Language primitive to return current iteration?

3. Expose Parallelism in Sliding Windows

XX 2s]4a]5]6]7]8]9]10]11]o00 «— input

- 7
N

FIR

v
0|1 output

000

 Legacy codes obscure parallelism in sliding windows

— In von-Neumann languages, modulo functions or copy/shift
operations prevent detection of parallelism in sliding windows

o Sliding windows are prevalent in our benchmark suite
— 57% of realistic applications contain at least one sliding window
— Programs with sliding windows have 10 instances on average

— Without this parallelism, 11 of our benchmarks would have a
new throughput bottleneck (work: 3% - 98%, median 8%)

Characterizing Sliding Windows

29%
One-item LA
. FIR Filters
windows
push 1
+
peek N+1 oeek N
Mosaic, HDTV, FMRadio,
JPEG decode / transcode, 3GPP, OFDM,
Vocoder Filterbank,
TargetDetect, DTOA,
27% Oversampler,

RateConvert, Vocoder,

M | SC el | aneous \ ChannelVocoder,

MP3: reordering (peek >1000) FMRadio
802.11: error codes (peek 3-7)
Vocoder / A.beam: skip data
Channel Vocoder:
sliding correlation
(peek 100)

34 Sliding
Window Types

4. Expose Startup Behaviors

« Example: difference encoder (JPEG, Vocoder)

Int-=>int filter O{
Int state = 0O;

work push 1 pop 1 {
push(peek(0) — state);
state = pop();
¥
¥ Stateful

 Required by 15 programs:

Int->int filter

01

prework push 1 pop 1{
push(peek(0));

¥

work push 1 pop 1 peek 2 {
push(peek(l) — peek(0));

pop();
¥
¥

Stateless

— For delay: MPD, HDTV, Vocoder, 3GPP, Filterbank,

DTOA, Lattice, Trellis, GSM, CRC

— For picture reordering (MPEG)
— For initialization (MPD, HDTV, 802.11)
— For difference encoder or decoder: JPEG, Vocoder

5. Surprise:
Mis-Matched Data Rates Uncommon

CD-DAT 1 2 3 2 7 8 7 5
benchmark o
X 147 X 98 X 28 X 32 <—multiplicities

Converts CD audio (44.1 kHz) to digital audio tape (48 kHz)

 This is adriving application in many papers
— Eg: [MBL94] [TZB99] [BB0O] [BML95] [CBL01] [MB04] [KSBO08]

— Due to large filter multiplicities, clever scheduling is
needed to control code size, buffer size, and latency

« But are mis-matched rates common in practice? No!

5. Surprise:
Mis-Matched Data Rates Uncommon

Excerpt from
JPEG transcoder

1

Characterizing Mis-Matched Data Rates

e In our benchmark suite:
— 89% of programs have a filter with a multiplicity of 1
— On average, 63% of filters share the same multiplicity
— For 68% of benchmarks, the most common multiplicity is 1

 Implication for compiler design:
DO not expect advanced buffering strategies to
nave a large impact on average programs

— Example: Karczmarek, Thies, & Amarasinghe, LCTES’03
— Space saved on CD-DAT: 14x
— Space saved on other programs (median): 1.2x

6. Surprise: Multi-Phase Filters
Cause More Harm than Good

A multi-phase filter divides its execution into many steps
— Formally known a cyclo-static dataflow ll 12
— Possible benefits:
e Shorter latencies
E IE
 More natural code

Stepl| F | Step2| F

« We implemented multi-phase filters, and we regretted it

— Programmers did not understand the difference between
a phase of execution, and a normal function call

— Compiler was complicated by presences of phases

« However, phases proved important for splitters / joiners
— Routing items needs to be done with minimal latency
— Otherwise buffers grow large, and deadlock in one case (GSM)

/. Programmers Introduce
Unnecessary State In Filters

« Programmers do not implement things how you expect

void->int filter
work push 2 {
push(0);
push(1);
h
}

01

Stateless

void-=int filter
nt x = 0;

work push 1 {
push(x);
X=1-x;
¥
}

01

Stateful

 Opportunity: add a “stateful” modifier to filter decl?
— Require programmer to be cognizant of the cost of state

8. Leverage and Improve Upon
Structured Streams

 Overall, programmers found it — |}—
useful and tractable to write

programs using structured streams g =

— Syntax is simple to write, easy to read

i[:\ A
° However, structured streams are ” [—'_>:}

occasionally unnatural \[:/

— And, In rare cases, insufficient

\

8. Leverage and Improve Upon
Structured Streams

1
1
1

Original:

Compiler recovers unstructured graph
using synchronization removal [Gordon 2010]

8. Leverage and Improve Upon
Structured Streams

 Characterization:
— 49% of benchmarks have an Identity node

— In those benchmarks, ldentities account
for 3% to 86% (median 20%) of instances

e Opportunity:
— Bypass capability (ala GOTO) for streams

Related Work

Benchmark suites in von-Neumann languages often
Include stream programs, but lose high-level properties

— MediaBench — HandBench — SPEC
— ALPBench — MiBench — PARSEC
— Berkeley MM Workload - NetBench — Perfect Club

Brook language includes 17K LOC benchmark suite
— Brook disallows stateful filters; hence, more data parallelism
— Also more focus on dynamic rates & flexible program behavior

Other stream languages lack benchmark characterization
— StreamC / KernelC — Baker — Spidle
- Cg — SPUR

In-depth analysis of 12 Streamlt “core” benchmarks
published concurrently to this paper [Gordon 2010]

Conclusions

 First characterization of a streaming benchmark suite
that was written in a stream programming language

— 65 programs; 22 programmers; 34 KLOC

 Implications for streaming languages and compilers:

DO: expose task, data, and pipeline parallelism

DO: expose parallelism in sliding windows

DO: expose startup behaviors

DO NOT: optimize for unusual case of mis-matched 1/O rates
DO NOT: bother with multi-phase filters

TRY: to prevent users from introducing unnecessary state
TRY: to leverage and improve upon structured streams

TRY: to prevent induction variables from serializing filters

« EXxercise care in generalizing results beyond Streamlt

Acknowledgments:
Authors of the StreamlIt Benchmarks

e Sitij Agrawal o Al Meli

« Basier Aziz e Mani Narayanan

e Jiawen Chen e Satish Ramaswamy
e Matthew Drake * Rodric Rabbah

o Shirley Fung e Janis Sermulins

* Michael Gordon Magnus Stenemo
e Ola Johnsson e Jinwoo Suh

e Andrew Lamb e Zain ul-Abdin

e Chris Leger Amy Williams

e Michal Karczmarek e Jeremy Wong

 David Maze

