Designing Mobile Interfaces for Novice and Low-Literate Users

Bill Thies
Microsoft Research India

Joint work with Indrani Medhi, Thomas Smyth, Emma Brunskill, Kentaro Toyama, Ed Cutrell, Somani Patnaik, Latif Alam, Satish Kumar, and Saman Amarasinghe

USID 2009
September 20, 2009
Mobile Phones in the Developing World

Population in Billion

- World Population: 6.7
- Cell Phone Users: 3.5
- Attained Secondary Education: 3.2
- Live to Age 60: 3.1
- Bank Account Holders: 1.0

1 D. Bloom, Measuring Global Educational Progress, 2006
2 World Bank, 2000
Usability Barriers
(Indrani Medhi)

• Conducted ethnographic observations of 125 people on traditional text-based interfaces

• Navigation difficulties:
 – Navigating hierarchical structures
 – Mapping soft-keys

• Input difficulties:
 – Using scroll bars
 – Using checkboxes
 – Constructing SMS and USSD syntaxes

• Language difficulties:
 – Specialized terms (e.g., transaction, jaundice) do not translate to local language
Design Recommendations
Case 1: Text-Based UI

• Provide local language support (in both text and audio)

• Minimize hierarchical structures

• Avoid requiring non-numeric text

• Avoid menus that require scrolling

• Minimize soft-key mappings
Design Space

Input method

- Free-form speech
- Structured speech
- Typing

Output method

- Text
- Audio
- Graphics [+ Audio]

Flexible

Flexible

Text-Based Forms, SMS, etc.

Live Operator

Spoken Dialog

IVR Interactive Voice Response

Graphical UI
Design Space

Input method

- Free-form speech
- Structured speech
- Typing

Output method

- Text
- Audio
- Graphics [+ Audio]

flexible

- Live Operator
- Spoken Dialog
- Text-Based Forms, SMS, etc.
- IVR Interactive Voice Response
- Graphical UI

inflexible
Focus 1: Text vs. Spoken Dialog, Graphical UI

Task: transfer money to a peer

Participants: 58 non-literate (up to 6th standard), Bangalore

<table>
<thead>
<tr>
<th></th>
<th>Text Based</th>
<th>Spoken Dialog</th>
<th>Graphical UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task completion</td>
<td>0%</td>
<td>72%</td>
<td>100%</td>
</tr>
<tr>
<td>Time taken</td>
<td>—</td>
<td>5 min</td>
<td>13 min</td>
</tr>
<tr>
<td>Help needed</td>
<td>—</td>
<td>4 prompts</td>
<td>14 prompts</td>
</tr>
</tbody>
</table>

Conclusions:
- Non-text designs are strongly preferred over text-based designs
- While task-completion rates are better for rich multimedia UI, speed is faster and less assistance is required on spoken-dialog system
Design Recommendations
Case 2: Rich Client UI

- Recommendation: graphical UI with spoken input?
Focus 2: Text vs. Live Operator

Task: report patient health symptoms

Participants: 13 literate health workers and hospital staff, Gujarat

<table>
<thead>
<tr>
<th>Text (Menus)</th>
<th>Text (SMS)</th>
<th>Live Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error rate</td>
<td>4.2%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Time taken</td>
<td>1.7 min</td>
<td>1.6 min</td>
</tr>
</tbody>
</table>

Error rate:
- Text (Menus) 4.2%
- Text (SMS) 4.5%
- Live Operator 0.45%

Conclusions:
- Live operator interface is only one with sufficient accuracy for health data
- This model is also simple to adopt and cost-effective in India (call centers cheap)
- Results caused partner to switch upcoming TB program from text to operator
Design Recommendations
Case 3: Reporting Short Data

- **Recommendation (in India):** use a live operator

- **Our proposition:** Operators are under-utilized for mobile data collection

- **Benefits:**
 - Lowest error rate
 - Less education and training needed
 - Most flexible interface

- **Challenges:**
 - Servicing multiple callers
Peer-to-Peer Media Sharing

(Thomas Smyth)

• If users are properly incentivized, they will overcome many barriers

(slides abridged – more details to be published soon)
Enabling User-Generated Content

• User-Generated Content has come to define the Web
 – Original attraction of the Web….everyone can be a publisher
 – Now…Blogs, review sites, digital video, forums, news comments, …
 – Empowers ordinary citizens with a voice + a global audience

“75% of all content on the Web is user-generated.”
— Reggie Bradford, CEO of Vitrue

“35% of U.S. Internet users have posted some sort of user-generated content online.”
— Home Broadband Adoption 2006, Pew Internet & American Life Project

• How do you enable someone to generate content…
 – With a low-end phone?
 – With limited literacy?
 – In their local language?

Promising avenue:
Leverage voice
Solution: An Audio Wiki

• Allow users to publish information:
 – Using a phone rather than a computer
 – Using voice rather than text

• Audio recording and playback, but keypad-driven navigation
 – Not attempting a dialogue-based system

• Rich space of applications spanning citizen’s journalism, political activism, dissemination of agriculture & health information, ...

• Research challenge: making it usable
 – Interactive voice response (IVR) typically frustrating
 – Research: adaptive interfaces, audio linking, flexible playback
Rich Space of Emerging Services

- **VoiKiosk / Spoken Web [IBM Research, ICTD 2009]**
 - 4 months; 1,000 users; 20,000 calls
 - Killer app: personal advertising
 - Toll-free number

- **Providing an audio frontend or analog to Twitter**
 - TwitWoop – MySay
 - AudioBoo – VoiceField
 - TwitSay – TweetCall
 - TwitterFone – TweetMic

 ➔ But not a single one is available in India

- Opportunity to redefine the “browser” for audio content
Conclusions

Mobile phones have usability barriers for novice and low-literate users
- Use voice and graphical interfaces
- Consider a call center when appropriate

If users are properly incentivized, they will overcome many barriers
- As evidenced by mobile video sharing
- Entertainment is a powerful motivator

Future opportunity in enabling user-generated content for novice users
- Can voice services mirror the Internet?
- Key challenges for user interface designers