#### Computer-Aided Design for Microfluidic Chips Based on Multilayer Soft Lithography

Nada Amin<sup>1</sup>, <u>William Thies<sup>2</sup></u>, Saman Amarasinghe<sup>1</sup>

<sup>1</sup> Massachusetts Institute of Technology <sup>2</sup> Microsoft Research India

International Conference on Computer Design

October 5, 2009

## **Microfluidic Chips**

#### Idea: a whole biology lab on a single chip

- Input/output
- Sensors: pH, glucose, temperature, etc.
- Actuators: mixing, PCR, electrophoresis, cell lysis, etc.

#### • Benefits:

- Small sample volumes
- High throughput
- Low-cost

#### Applications:

- Biochemistry
- Cell biology
- Biological computing



## Moore's Law of Microfluidics: Valve Density Doubles Every 4 Months



Source: Fluidigm Corporation (http://www.fluidigm.com/images/mlaw\_lg.jpg)

## Moore's Law of Microfluidics: Valve Density Doubles Every 4 Months



Source: Fluidigm Corporation (http://www.fluidigm.com/didIFC.htm)

## Current Practice: Manage Gate-Level Details from Design to Operation

• For every change in the experiment or the chip design:



1. Manually draw in AutoCAD

2. Operate each gate from LabView

## **Abstraction Layers for Microfluidics**



## **Abstraction Layers for Microfluidics**

chip 3

#### **Protocol Description Language**

- architecture-independent protocol description

# Fluidic Instruction Set Architecture (ISA) primitives for I/O, storage, transport, mixing



chip 1



#### Fluidic Hardware Primitives

- valves, multiplexers, mixers, latches

#### Contributions

BioStream Language [IWBDA 2009]

Optimized Compilation [Natural Computing 2007]

Demonstrate Portability [DNA 2006]

Micado AutoCAD Plugin [MIT 2008, ICCD 2009]

Digital Sample Control Using Soft Lithography [Lab on a Chip '06]

## **Droplets vs. Continuous Flow**



Source: Chakrabarty et al, Duke University

Digital manipulation of droplets on an electrode array

[Chakrabarty, Fair, Gascoyne, Kim, ...]

#### Pro:

- Reconfigurable routing
- Electrical control
- More traction in CAD community



Continuous flow of fluids (or droplets) through fixed channels [Whitesides, Quake, Thorsen, ...]

#### Pro:

- Smaller sample sizes
- Made-to-order availability [Stanford]
- More traction in biology community

## Primitive 1: A Valve (Quake et al.)



#### **Primitive 2: A Multiplexer (Thorsen et al.)**



#### **Primitive 2: A Multiplexer (Thorsen et al.)**



## Primitive 3: A Mixer (Quake et al.)



Load sample on bottom
 Load sample on top
 Peristaltic pumping

Rotary Mixing

## **CAD Tools for Microfluidic Chips**

- Goal: automate placement, routing, control of microfluidic features
- Why is this different than electronic CAD?
  - 1. Control ports (I/O pins) are bottleneck to scalability
    - Pressurized control signals cannot yet be generated on-chip
    - Thus, each logical set of valves requires its own I/O port
  - 2. Control signals correlated due to continuous flows



→ Demand & opportunity for minimizing control logic



| $in_1 in_2 in_3 in_4$<br>* * * * | 1. Describe Fluidic ISA |
|----------------------------------|-------------------------|
| <b>*</b><br>out                  |                         |



- 1. Describe Fluidic ISA
- 2. Infer control valves



- 1. Describe Fluidic ISA
- 2. Infer control valves
- 3. Infer control sharing



- 1. Describe Fluidic ISA
- 2. Infer control valves
- 3. Infer control sharing
- 4. Route valves to control ports



- 1. Describe Fluidic ISA
- 2. Infer control valves
- 3. Infer control sharing
- 4. Route valves to control ports
- 5. Generate an interactive GUI



- 1. Describe Fluidic ISA
- 2. Infer control valves
- 3. Infer control sharing
- 4. Route valves to control ports
- 5. Generate an interactive GUI

### **1. Describe a Fluidic ISA**

Hierarchical and composable flow declarations



#### **1. Describe a Fluidic ISA**



#### **1. Describe a Fluidic ISA**





50x real-time

#### 2. Infer Control Valves



#### 2. Infer Control Valves









- NP-hard
- Reducible to graph coloring



- NP-hard
- Reducible to graph coloring



- NP-hard
- Reducible to graph coloring

| $in_1$ $in_2$ $in_3$ $in_4$ |                       | $in_1 \rightarrow o$ | $in_2 \rightarrow o$ | $in_3 \rightarrow 0$ | $in_4 \rightarrow o$ |
|-----------------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| * * * *                     | <i>v</i> <sub>1</sub> | open                 | closed               |                      |                      |
|                             | <i>v</i> <sub>2</sub> | closed               | open                 |                      |                      |
| $v_1 v_2 = v_2 v_4$         | <i>v</i> <sub>3</sub> |                      |                      | open                 | closed               |
| $v_1 v_2 v_3 v_4$           | <i>v</i> <sub>4</sub> |                      |                      | closed               | open                 |
|                             | <i>v</i> <sub>5</sub> | open                 | open                 | closed               | closed               |
| out                         | <i>v</i> <sub>6</sub> | closed               | closed               | open                 | open                 |

- NP-hard
- Reducible to graph coloring

### 4. Route Valves to Control Ports



 Build on recent algorithm for simultaneous pin assignment & routing [Xiang et al., 2001]

 Idea: min cost - max flow from valves to ports

- Our contribution: extend algorithm to allow sharing
  - Previous capacity constraint on each edge:

$$f_1 + f_2 + f_3 + f_4 + f_5 + f_6 \le 1$$

– Modified capacity constraint on each edge:

 $max(f_1, f_4) + max(f_2, f_3) + f_5 + f_6 \le 1$ 

→Solve with linear programming, allowing sharing where beneficial

### 4. Route Valves to Control Ports



 Build on recent algorithm for simultaneous pin assignment & routing [Xiang et al., 2001]

 Idea: min cost - max flow from valves to ports

- Our contribution: extend algorithm to allow sharing
  - Previous capacity constraint on each edge:

$$f_1 + f_2 + f_3 + f_4 + f_5 + f_6 \le 1$$

- Modified capacity constraint on each edge:

 $max(f_1, f_4) + max(f_2, f_3) + f_5 + f_6 \le 1$ 

→Solve with linear programming, allowing sharing where beneficial

## Micado: An AutoCAD Plugin

#### Implements ISA, control inference, routing, GUI export

- Using slightly older algorithms than presented here [Amin '08]
- Parameterized design rules
- Incremental construction of chips
- Realistic use by at least 3
   microfluidic researchers
- Freely available at:
   <u>http://groups.csail.mit.edu/cag/micado/</u>



#### **Embryonic Cell Culture**



#### **Metabolite Detector**



Courtesy J.P. Urbanski

#### **Cell Culture with Waveform Generator**



## **Open Problems**

- Automate the design of the flow layer
  - Hardware description language for microfluidics
  - Define parameterized and reusable modules
- Replicate and pack a primitive as densely as possible
  - How many cell cultures can you fit on a chip?
- Support additional primitives and functionality
  - Metering volumes
  - Sieve valves
  - Alternate mixers
  - Separation primitives

## Conclusions

- Microfluidics represents a rich new playground for CAD researchers
- Two immediate goals:
  - Enable designs to scale
  - Enable non-experts to design their own chips



Courtesy J.P. Urbanski

- Micado is a first step towards these goals
  - Hierarchical ISA for microfluidics
  - Inference and minimization of control logic
  - Routing shared channels to control ports
  - Generation of an interactive GUI

#### http://groups.csail.mit.edu/cag/micado/