
DOI: 10.1007/s10766-005-3590-6

International Journal of Parallel Programming, Vol. 33, Nos. 2/3, June 2005 (© 2005)

Language and Compiler Design

for Streaming Applications

Saman Amarasinghe,1,2 Michael l. Gordon,1

Michal Karczmarek,1 Jasper Lin,1 David Maze,1

Rodric M. Rabbah,1 and William Thies1

High-performance streaming applications are a new and distinct domain of

programs that is increasingly important. The StreamIt language provides

novel high-level representations to improve programmer productivity and pro-

gram robustness within the streaming domain. At the same time, the Strea-

mIt compiler aims to improve the performance of streaming applications

via stream-specific analysis and optimizations. In this paper, we motivate,

describes and justify the StreamIt language which include a structured model

of streams, a messaging system for control, and a natural textual syntax.

KEY WORDS: Stream computing; StreamIt; parallelizing compiler; tiled-

processor architectures; productivity.

1. INTRODUCTION

Applications that are structured around some notion of a “stream” are

prevalent to common computing practices, and there is evidence that stream-

ing media applications already consume a substantial fraction of the compu-

tation cycles on consumer machines.(1) Furthermore, stream processing—of

voice and video data—is central to a plethora of embedded systems, includ-

ing hand-held computers, cell phones, and DSPs. The stream abstraction is

also fundamental to high-performance systems such as intelligent software

routers, cell phone base stations, and HDTV editing consoles.

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139, USA. E-mail: {saman, mgordon, karczma, jasperln,

dmaze, rabbah, thies}@csail.mit.edu
2 To whom correspondence should be addressed.

261

0885-7458/05/0600-0261/0 © 2005 Springer Science+Business Media, Inc.



262 Amarasinghe et al.

Despite the prevalence of these applications, there is surprisingly little

language and compiler support for practical, large-scale stream program-

ming. Of course, the notion of a stream as a programming abstraction

was established decades ago,(2) and a number of special-purpose stream

languages exist today (see Ref. 3 for a review). Many of these languages

and representations are elegant and theoretically sound, but they are not

flexible enough to support straightforward development of modem stream

applications, and their implementations are too inefficient to use in prac-

tice. Consequently, most programmers resort to general-purpose languages

such as C or C++ to implement stream programs. Yet there are sev-

eral reasons why general-purpose languages are inadequate for stream

programming. Most notably, they do not provide a natural or intuitive

representation of streams, thereby reducing readability, robustness, and

programmer productivity. Moreover, because the widespread parallelism

and regular communication patterns of data streams are left implicit in

general-purpose languages, compilers are not stream-conscious and can-

not perform stream-specific optimizations. As a result, performance-criti-

cal codes are often expressed in a low-level assembly language and must

be re-implemented for each target architecture. This practice is labor-inten-

sive, error-prone, and very costly.

General-purpose languages are also poorly suited for the emerging

class of tile-based architectures(4–6) that are well geared for stream pro-

cessing. Perhaps the primary appeal of C is that it provides a “common

machine language” for von-Neumann architectures. That is, it abstracts

away the idiosyncratic differences between machines, but encapsulates their

common properties: a single program counter, arithmetic operations, and

a monolithic memory. However, the von-Neumann model does not hold in

the context of tiled architectures as there are multiple instruction streams

and distributed memory banks. Consequently, C can not serve as a com-

mon machine language, and in fact it provides the wrong abstraction

for the underlying hardware, and architecture-specific directives are often

needed to obtain reasonable performance. Thus the responsibilities of the

programmer are increased, and the portability of applications is hampered.

In this paper, we describe and justify StreamIt as a high-level, architecture

independent programming language for stream programming (Section 3). The

StreamIt language is designed to provide high-level stream abstractions that

improve programmer productivity and program robustness within the stream-

ing domain. Furthermore, it is intended to serve as a common machine lan-

guage for tile-based processors, and parallel computing substrates in general

(e.g., grids and clusters of workstations). At the same time, the StreamIt com-

piler aims to perform novel stream-specific optimizations to achieve the per-

formance of an expert programmer (Section 4).



Language and Compiler Design for Streaming Applications 263

In the following section, we begin with a characterization of the

streaming domain and motivate the design of StreamIt. Section 5 discusses

related work, and Section 6 summarizes and concludes the paper.

2. STREAMING APPLICATION DOMAIN

The applications that make use of a stream abstraction are diverse,

with targets ranging from embedded devices, to consumer desktops, to

high-performance servers. Examples include systems such as the Click

modular router(7) and the Spectrumware software radio;(8,9) specifications

such as the Bluetooth communications protocol,(10) the GSM Vocoder,(11)

and the AMPS cellular base station,(12) and almost any application devel-

oped with Microsoft’s DirectShow library,(13) Real Network’s RealSDK(14)

or Lincoln Lab’s Polymorphous Computing Architecture.(15)

We have identified a number of properties that are common to such

applications—enough so as to characterize them as belonging to a dis-

tinct class of programs which we will refer to as streaming applications.

We believe that the salient characteristics of a streaming application are

as follows:

1. Large streams of data. Perhaps the most fundamental aspect of

a streaming application is that it operates on a large (or virtu-

ally infinite) sequence of data items, hereafter referred to as a data

stream. Data streams generally enter the program from some exter-

nal source, and each data item is processed for a limited time

before being discarded. This is in contrast to scientific codes which

manipulate a fixed input set with a large degree of data reuse.

2. Independent stream filters. Conceptually, a streaming computation

represents a sequence of transformations on the data streams in the

program. We will refer to the basic unit of this transformation as

a filter: an operation that—on each execution step—reads one or

more items from an input stream, performs some computation, and

writes one or more items to an output stream. Filters are generally

independent and self-contained, without references to global vari-

ables or other filters. A stream program is the composition of fil-

ters into a stream graph, in which the outputs of some filters are

connected to the inputs of others.

3. A stable computation pattern. The structure of the stream graph

is generally constant during the steady-state operation of a stream

program. That is, a certain set of filters are repeatedly applied in

a regular, predictable order to produce an output stream that is a

given function of the input stream.



264 Amarasinghe et al.

4. Occasional modification of stream structure. Even though each

arrangement of filters, is executed for a long time, there are occa-

sional dynamic modifications to the stream graph. For instance, a

software radio re-initializes a portion of the stream graph when a

user switches from AM to FM. Sometimes, these re-initializations

are synchronized with some data in the stream, as when a network

protocol changes from Bluetooth to 802.11 at a certain point of a

transmission. There is typically an enumerable number of configu-

rations that the stream graph can adopt in any one program, such

that all of the possible arrangements of filters are known at compile

time.

5. Occasional out-of-stream communication. In addition to the high-

volume data streams passing from one filter to another, filters also

communicate small amounts of control information on an infre-

quent and irregular basis. Examples include changing the volume

on a cell phone, printing an error message to a screen, or changing

a coefficient in an upstream Finite Impulse Response (FIR) filter.

6. High performance expectations. Often there are real-time constraints

that must be satisfied by streaming applications. Thus, efficiency (in

terms of both latency and throughput) is a primary concern. Addi-

tionally, many embedded applications are intended for mobile envi-

ronments where power consumption, memory requirements, and

code size are also important.

3. LANGUAGE OVERVIEW

StreamIt includes stream-specific abstractions and representations that

are designed to improve programmer productivity in the domain of

streaming applications. StreamIt programs are represented as hierarchical

stream graphs consisting of filters as the fundamental processing blocks.

This section presents the StreamIt 2.0 syntax for describing filters and the

stream graph.

3.1. Filters

The basic unit of computation in StreamIt is the filter. An exam-

ple of a filter from our software radio (see Fig. 1) is the FIRFilter,

shown in Fig. 2. Each filter has an input channel from which it reads data,

and an output channel to which it writes data. The filter also contains

a work function, which describes the filter’s most fine grained execution

step in the steady state. Within the work function, a filter can commu-

nicate with neighboring blocks over implicit channels that support three



Language and Compiler Design for Streaming Applications 265

Fig. 1. A block diagram of our frequency-hopping software radio.

Fig. 2. An FIR filter in StreamIt.

operations: (1) pop () removes an item from the end of the channel and

returns its value, peek (i) returns the value of the item i spaces from

the end of the channel without removing it, and (3) push (x) writes x to

the front of the channel. The argument x is passed by value; if it is an

object, a separate copy is enqueued on the channel. Currently, the number

of items peeked, popped, and pushed by each filter must be constant from

one invocation of the work function to the next. In fact, as described in

the sequel, the input and output rates are declared as part of the work

function declaration; a violation of the declared rates may result in a run-

time error and the subsequent behavior of the program is undefined. We

plan to support variables input and output rates in a future version of

Streamlt.

Each filter also contains an init function that is called at the time of

initialization. This function allows the programmer to establish the initial



266 Amarasinghe et al.

state of the filter. For example, the FIRFilter calculates some weights

that will serve as coefficients for filtering. The init function may not push,

pop, or peek items; however, a filter may also declare a prework function

to be called in place of the normal work function on the first iteration. A

filter is instantiated using add, body, or loop statements, and the init func-

tion is called implicitly with the same arguments that were passed in the

instantiating statements.

Each filter has a fixed input type, output type, and I/O rates. The

input and output types are specified as part of the filter declaration; the

sample FIRFilter has an input and output type of float, represented as

float → float. The I/O rates are declared as part of the work function.

Any expression that can be resolved to a constant at compile time is a

valid I/O rate. The peek rate may be omitted if it is the same as the pop

rate.

3.1.1. Rationale

StreamIt’s representation of a filter is an improvement over general-

purpose languages. In a procedural language, the analog of a filter is a

block of statements in a complicated loop nest (see Fig. 3). This rep-

resentation is unnatural for expressing the feedback and parallelism that

is inherent in streaming systems. Also, there is no clear abstraction bar-

rier between one filter and another, and high-volume stream processing is

muddled with global variables and control flow. The loop nest must be

re-arranged if the input or output ratios of a filter change, and schedul-

ing optimizations further inhibit the readability of the code. In contrast,

StreamIt places the filter in its own independent unit, making explicit the

parallelism and inter-filter communication while hiding the grungy details

of scheduling and optimization from the programmer.

Alternatively, one could use an object-oriented language to implement

a stream abstraction (see Fig. 4). This avoids some of the problems asso-

ciated with a procedural loop nest, but the programming model is again

complicated by efficiency concerns. That is, a runtime library usually exe-

cutes filters according to a pull model, where a filter operates on a block

of data that it retrieves from the input channel. The block size is often

optimized for the cache size of a given architecture, thus hampering por-

tability. Moreover, operating on large-grained blocks obscures the funda-

mental fine-grained algorithm that is visible in a StreamIt filter. Thus, the

absence of a runtime model in favor of automated scheduling and optimi-

zation again distinguishes StreamIt.



Language and Compiler Design for Streaming Applications 267

Fig. 3. An optimized FIR filter in a procedural language. A complicated loop nest is

required to avoid mod functions and to use memory efficiently, and the structure of the loops

depends on the data rates (e.g., BLOCK−SIZE) within the stream. An actual implementation

might inline the calls to step.

3.2. Connecting Filters

StreamIt provides three constructs for composing filters into a commu-

nicating network. They are pipeline, splitjoin, and feedbackloop (see Fig. 5).

Each structure specifies a pre-defined way of connecting filters into a single-

input, single-output block, henceforth refereed to as a “stream”; a stream is

any instance of a filter, pipeline, splitjoin, or feedbackloop. A pipeline is for

building a sequence of streams, a split-join is for running streams in paral-

lel, and a feedback loop is or introducing cycles in the stream graph. Every

StreamIt program is a hierarchical composition of these stream structures.

The pipeline construct is for building a sequence of streams. The body

of a pipeline is a sequence of statements that are executed upon its instan-

tiation. Component streams are added to the pipeline via successive calls

to add. For example, in the AudioEcho in Fig. 6, there are four streams



268 Amarasinghe et al.

Fig. 4. An FIR filter in an object oriented language. A “pull model” is used by each filter

object filter object to retrieve a chunk of data from its source, and straight-line code connects

one filter to another.

in the pipeline: an AudioSource, an EchoEffect, an Adder, and a Speaker.

This sequence of statements automatically connects the four streams in the

order specified. There is no work function in a pipeline: the component

streams fully specify the behavior; the channel types and data rates are

also implicit from the connections.

The split-join construct is used to specify independent parallel streams

that diverge from a common splitter and merge into a common joiner. As

in a pipeline, the components of a split–join are specified with successive

calls to add. For example, the EchoEffect in Fig. 6 adds two streams that

run in parallel, the first is a Delay filter and the other is an identity filter.



Language and Compiler Design for Streaming Applications 269

Fig. 5. Stream structures supported by StreamIt: pipeline (left), splitjoin (middle), and a

feedbackloop (right).

Fig. 6. An echo effect in StreamIt. Extra items are pushed on to Delay’s output tape in the

prework function to cause the delay.



270 Amarasinghe et al.

The splitter specifies how items from the input of the split–join are

distributed to the parallel components. Currently we allow two types of

compiler-defined splitters: duplicate which replicates each data item and

sends a copy to each parallel stream, and roundrobin (i1, i2, . . . , ik), which

sends the first i1 data items to the stream that was added first, the

next i2 data items to the stream that was added second, and so on.

As shorthand, roundrobin(1) is equivalent to roundrobin (i, i, i, . . . ). An

unadorned roundrobin is equivalent to roundrobin(l). Lastly, if none of

the parallel components require any input, and there are no input items

to split, then roundrobin(0) may be used. Note that roundrobin can func-

tion as an exclusive selector if one or more of the weights are zero.

Similarly, the joiner is used to indicate how the outputs of the par-

allel streams are interleaved on the output channel of the split–join. The

only supported joiner is roundrobin, which is analogous to a round–robin

splitter.

The splitter and joiner types are specified with calls to split and join,

respectively. The EchoEffect uses a duplicate splitter so that each item

appears directly—via the identity filter—and as an echo—via the Delay

filter. The round–robin joiner interleaves the immediate signals with the

delayed ones. In AudioEcho, an Adder is used to combine each pair of

interleaved signals.

The feedbackloop construct provides a way to create cycles in the

stream graph. The Fibonacci stream in Fig. 7 illustrates the use of this

construct. Each feedback loop contains: (1) a body stream, which is the

block around which a backward “feedback path” is being created, (2) a

loop stream, which can perform some computation along the feedback

path, (3) a splitter, which distributes data between the feedback path and

the output channel at the bottom of the loop, and (4) a joiner, which

merges items between the feedback path and the input channel at the top

of the loop. These components are specified via calls to body, loop, split,

and join, respectively.

The splitters and joiners can be any of those for a splitjoin, with the

exception of roundrobin(0). The call to loop may be omitted if no com-

putation is performed along the feedback path.

The feedback loop has special semantics when the stream is first exe-

cuted. The loop’s joiner needs inputs from its feedback path before it can

fire. These inputs are provided by enqueue statements within the body of

the loop.

Evident in the Fibonnacci example of Fig. 7 is another feature of the

StreamIt syntax: inlining. The definition of any stream can be inlined at

the point of its instantiation, thereby preventing the definition of many

small stream structures that are used only once, and, moreover, providing



Language and Compiler Design for Streaming Applications 271

Fig. 7. A feedbackloop version of Fibonnaci.

a syntax that reveals the hierarchical structure of the streams from the

indentation level of the code.

3.2.1. Rationale

StreamIt differs from other languages in that it imposes a well-defined

structure on the streams; all stream graphs are built out of a hierarchi-

cal composition of pipelines, split–joins, and feedback loops. This is in

contrast to other environments that generally regard a stream as a flat

and arbitrary network of filters that are connected by channels. Arbitrary

graphs are very hard for the compiler to analyze, and equally difficult for

a programmer to describe. Most programmers either resort to straight-line

code that links one filter to another (thereby obscuring the stream graph),

or they use an ad-hoc graphical programming environment that admits no

good textual representation.

In contrast, StreamIt affords a clean textual representation of stream

graphs, and the comparison of StreamIt’s structure with arbitrary stream

graphs may be likened to the difference between structured control flow

and GOTO statements: although the structure may occasionally restrict

the expressiveness of the programmer, the gains in robustness, readability,

and compiler analysis are immense. Furthermore, the graphical program-

ming environment we have developed for StreamIt has the advantage that

every stream graph corresponds to a precise textual counterpart that is

easily edited by a programmer. Further, the hierarchical structure of the



272 Amarasinghe et al.

stream graph simplifies visualization, and hence the graphical development

environment is better suited for large scale application development.

3.3. Messages

StreamIt provides a dynamic messaging system for passing irregular,

low-volume control information between filters and streams. Messages are

sent from within the body of a filter’s work function, perhaps to change

a parameter in another filter. For example, in our software radio exam-

ple, the CheckFreqHop stage sends a message upstream to change the fre-

quency of the receiver if it detects that the transmitter is about to change

frequencies. The sender can continue to execute while the message is en

route, and the target method will be invoked in the receiver with the spec-

ified arguments when the message arrives. Since message delivery is asyn-

chronous, there can be no return value; only void methods can be message

targets.

The central aspect of the messaging system is a sophisticated timing

mechanism that allows filters to specify when a message is received rela-

tive to the flow of information between the sender and the receiver. Recall

that each filter executes independently, without any notion of global time.

Thus, the only meaningful notion of time for any two filters is in terms of

the data items that are passed through the streams from one to the other.

In StreamIt, one can specify a range of latencies for each message

delivery. This latency is measured in terms of an information “wavefront”

from one filter to another. For example, in the CheckFreqHop example of

Fig. 1, the sender indicates an interval of latencies, for example, between

4 and 6. Due to space limitations, we cannot define this notion precisely

(see Refs. 16 and 17 for the formal semantics), but the general idea is sim-

ple: the receiver is invoked when it sees the information wavefront that the

sender sees in 4–6 execution steps.

StreamIt also supports modular broadcast messaging. When a sender

wants to send a message that will invoke method M of the receiver R

upon arrival, it does not call M on the object R. Rather, it calls M on a

portal of which R is a member. Portals are typed containers that forward

all messages they receive to the elements of the container. Portals could be

useful in cases when a component of a filter library needs to announce a

message (e.g., that it is shutting down) but does not know the list of recip-

ients; the user of the library can pass to the filter a portal containing all

interested receivers. As for message delivery constraints, the user specifies

a single time interval for each message, and that interval is interpreted sep-

arately (as described above) for each receiver in the portal.



Language and Compiler Design for Streaming Applications 273

3.3.1. Rationale

Stream programs present a challenge in that filters need regular, high-

volume data transfer as well as irregular, low-volume control communica-

tion. Moreover, there is the problem of reasoning about the relative “time”

between filters when they are running asynchronously and in parallel.

A different approach to messaging is to embed control messages in

the data stream instead of providing a separate mechanism for dynamic

message passing. This does have the effect of associating the message time

with a data item, but it is complicated, error-prone, and leads to unread-

able code. Further, it could hurt performance in the steady state (if each

filter has to check whether or not a data item is actual data or control,

instead) and may also complicate compiler analysis. Finally, one can’t send

messages upstream without creating a separate data channel for them to

travel in.

Another solution is to treat messages as synchronous method calls.

However, this delays the progress of the stream when the message is en

route, thereby degrading the performance of the program and restricting

the compiler’s freedom to reorder filter executions.

We feel that the StreamIt messaging model is an advance in that

it separates the notions of low-volume and high-volume data transfer—

both for the programmer and the compiler—without losing a well-defined

semantics, where messages are timed relative to the high-volume data

flow. Further, by separating message communication into its own category,

fewer connections are needed for steady-state data transfer and the result-

ing stream graphs are more amenable to structured stream programming.

4. STREAMIT COMPILER

We have implemented a fully functional StreamIt compiler as an

extension to the Kopi Java Compiler, a component of the open-source

Kopi Project.(18) The compiler performs a number of stream-specific opti-

mizations, and targets a conventional uniprocessor machine, a networked

cluster of workstations, or the MIT Raw architecture. Raw consists of

a 2D mesh of 16 independent processor tiles with fast statically sched-

uled interconnect.(5) We have also developed a library that allows StreamIt

code to be executed as pure Java, thereby providing a rapid verification

mechanism.

The compilation process for streaming programs contains many novel

aspects because the basic unit of computation is a stream rather than

a procedure. In order to compile stream modules separately, we have

developed a runtime interface—analogous to that of a procedure call for



274 Amarasinghe et al.

traditional codes—that specifies how one can interact with a black box of

streaming computation. The stream interface contains separate phases for

initialization and steady-state execution; in the execution phase, the inter-

face includes a contract for input items, output items, and possible mes-

sage production and consumption.

Compiling for Raw involves constructing an expanded stream graph

from the input program, and then partitioning this into 16 sections to

fit on to the tiles of the chip.(19) The principal technique for doing this

involves fusing adjacent filters in the stream graph to form a single filter.

Vertical fusion performs fusion on successive filters in a pipeline, while hor-

izontal fusion joins the parallel streams in a split–join.

The StreamIt compiler also contains a set of domain-specific opti-

mizations for linear filters where each output is a weighted sum of the

inputs (e.g., FIR, FFT, and DCT). The compiler automatically detects

linear filters and performs large-scale algebraic simplification of adjacent

components, as well as automated translation into the frequency domain

when the transformation results in faster code. These techniques yield

average speedups of 450% for benchmarks with large linear components

(see Ref. 20 for details).

We have implemented a number of stream programs (Table I) to test

the performance of our compiler. Our benchmarks include several small

kernels which would typically be used as parts of larger applications, along

with some larger systems.

Results of the compiler are given in Table II. For each application,

we compare the throughput of StreamIt with a hand-written C program,

running the latter on either a single tile of Raw or on a Pentium IV. For

Radio, GSM, and Vocoder, the C source code was obtained from a third

party; in other cases, we wrote a C implementation following a reference

algorithm. For each benchmark, we show MFLOPS (which is N/A for

integer applications), processor utilization (the percentage of time that an

occupied tile is not blocked on a send or receive), and throughput.

5. RELATED WORK

A large number of programming languages support a concept of a

stream (see Ref. 3 for a survey). Those that are perhaps most related to

StreamIt are synchronous dataflow languages such as LUSTRE(21) and

ESTEREL(22) which require a fixed number of inputs to arrive simulta-

neously before firing a stream node. However, most special-purpose stream

languages do not contain features such as messaging and support for mod-

ular program development that are essential for modem stream applica-

tions. Also, most of these languages are so abstract and unstructured that



Language and Compiler Design for Streaming Applications 275

Table I. Application Characteristics

Number of constructs in the program

Total

Lines of Feedback no of

Benchmark Description code Filters Pipelines Splitjoins loops filters

FIR 64 tap FIR 125 5 1 0 0 132

Radar Radar array front-end(15) 549 8 3 6 0 52

Radio FM Radio with 525 14 6 4 0 26

an equalizer

Sort 32 element Bitonic Sort 419 4 5 6 0 242

FFT 64 element FFT 200 3 3 2 0 24

Filterbank 8 channel Filterbank 650 9 3 1 1 51

GSM GSM Decoder 2,261 26 11 7 2 46

Vocoder 28 channel Vocoder(26) 1,964 55 8 12 1 101

3GPP 3GPP Radio Access 1,087 16 10 18 0 48

Protocol(27)

Table II. Performance Results

250 MHz Raw processor C on a 2.2 GHz

Intel Pentium IV

C on a

StreamIt on 16 tiles single title

Number Throughput Throughput Throughput

Utilization of tiles (per 105 (per 105 (per 105

Benchmark (%) used MFLOPS cycles) cycles) cycles)

FIR 84 14 815 1188.1 293.5 445.6

Radar 79 16 1,231 0.52 App. too large 0.041

Radio 73 16 421 53.9 8.85 14.1

Sort 64 16 N/A 2,664.4 225.6 239.4

FFT 42 16 182 2,141.91 468.9 448.5

Filterbank 41 16 644 256.4 8.9 7.0

GSM 23 16 N/A 80.9 App. too large 7.76

Vocoder 17 15 118 8.74 App. too large 3.35

3GPP 18 16 44 119.6 17.3 65.7



276 Amarasinghe et al.

the compiler cannot perform enough analysis and optimization to result

in an efficient implementation.

At an abstract level, the stream graphs of StreamIt share a number

of properties with the synchronous dataflow (SDF) domain as considered

by the Ptolemy project.(23) Each node in a SDF graph produces and con-

sumes a given number of items, and there can be delays along the arcs

between nodes (corresponding loosely to items that are peeked in Strea-

mIt). As in StreamIt, SDF graphs are guaranteed to have a static sched-

ule and there are a number of nice scheduling results incorporating code

size and execution time.(24) However, previous results on SDF scheduling

do not consider constraints imposed by point-to-point messages, and do

not include StreamIt’s level of programming language support.

The Imagine architecture is specifically designed for the streaming

application domain.(1) It operates on streams by applying a computation

kernel to multiple data items off the stream register file. The compute ker-

nels are written in Kernel-C while the applications stitching the kernels are

written in Stream-C. Unlike StreamIt, with Imagine the user has to manu-

ally extract the computation kernels that fit the machine resources in order

to get good steady-state performance for the execution of the kernel.(25)

6. CONCLUSIONS AND FUTURE WORK

This paper presents StreamIt, a novel language for high-performance

streaming applications. Stream programs are emerging as a very important

class of applications with distinct properties from other recognized appli-

cation classes. This paper presents a fundamental programming paradigm

for the streaming domain.

The primary goal of StreamIt is to raise the abstraction level in

stream programming without sacrificing performance. The StreamIt model

for defining filters, and the methodology for filter composition, and mes-

saging will improve programmer productivity and program robustness

within the streaming domain. Also, we believe that StreamIt is a viable

common machine language for distributed and parallel architectures (e.g.,

see Refs. 4–6), just as C is a common machine language for von-Neumann

machines. StreamIt abstracts away the target’s granularity, memory lay-

out, and network interconnect, while capturing the notion of indepen-

dent processors that communicate in regular patterns. Fission and fusion

algorithms can automatically adjust the granularity of a stream graph to

match that of a given target.

We have a number of extensions planned for the next version of the

StreamIt language. The current version is designed primarily for uniform

one-dimensional data processing, but constructs for hierarchical frames of



Language and Compiler Design for Streaming Applications 277

data would be useful for image processing. Moreover, a future version

will support dynamically varying I/O rates of the filters in the stream.

We expect that such support will require new language constructs—for

instance, a type-dispatch splitter that routes items to the components of

a split–join based on their type, and a fall-through joiner that pulls items

from any stream in a split–join as soon as they are produced.

Our immediate focus is on developing a high-performance optimiz-

ing compiler for StreamIt that can match the performance of hand-coded

applications, such that the abstraction benefits of StreamIt come with no

performance penalty.

ACKNOWLEDGMENTS

This work was supported in part by DARPA Grant DBT6396-C-0036

and NSF ITR ACI-0325297. For more information about StreamIt, visit

http: //www. cag. csail.mit.edu/streamit/.

REFERENCES

1. S. Rixner, W. Dally, U. Kapasi, P. Mattson, J. Owens, B. Khailany, and A. Lopez-

Lagunas, A Bandwidth-Efficient Architecture for Media Processing, in Int. Symp. on

Microarchitecture, pp. 3–13 (December 1998).

2. H. Abelson and G. Sussman, Structure and Interpretation of Computer Programs, MIT

Press, Cambridge, MA (1985).

3. R. Stephens, A Survey of Stream Processing, Acta Informatica 34(7):491–541 (1997),

URL citeseer.nj.nec.com/stephenas95survey.html.

4. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz, Smart Memories:

A Modular Recongurable Architecture (2000).

5. E. Waingold et al., Baring it all to Software: The Raw Machine, MIT-LCS Technical

Report 709, Cambridge, MA (1997).

6. K. Sankaralingam, R. Nagarajan, S. Keckler, and D. Burger, A Technology-Scalable

Architecture for Fast Clocks and High ILP, UT Austin Tech Report 01-02 (2001).

7. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, The Click

Modular Router, ACM Trans. Comput. Syst. 18(3): 263–197 (2000), URL

http://www.acm.org/pubs/citations/journals /tocs/2000-18-3/p26%3-kohler/.

8. D. Tennenhouse and V. Bose, The Spectrum Ware Approach to Wireless Signal Pro-

cessing, Wireless Netw. (1999).

9. V. Bose, M. Ismert, M. Welborn, and J. Guttag, Virtual Radios, IEEE/JSAC, Special

Issue on Software Radios (April 1999).

10. B. Volume and B. July, Bluetooth Specification, Vol. 1, Bluetooth Consortium (July

1999).

11. M. Mouly and M. B. Pautet, The GSM System for Mobile Communications, Cell&Sys,

Palaiseau, France (1992).

12. EIA/TIA, Mobile Station–Land Station Compatibility Spec., Technical Report 553,

ANSI/EIA/TIA (1989).



278 Amarasinghe et al.

13. Microsoft Corporation, Microsoft DirectShow, Online Documentation (2001).

14. RealNetworks, Software Developer’s Kit, Online Documentation (2001).

15. J. Lebak, Polymorphous Computing Architecture (PCA) Example Applications and

Description, External Report, MIT Lincoln Laboratory (August 2001).

16. B. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A Language for Streaming

Applications, MIT-LCS Technical Memo TM-620, Cambridge, MA (August 2001).

17. W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffmann, M. Brown,

and S. Amarasinghe, StreamIt: A Compiler for Streaming Applications, Technical

Memo TM-622, MIT-LCS, Cambridge, MA (December 2001).

18. V. Gay-Para, T. Graf, A.-G. Lemonnier, and E. Wais, Kopi Reference Manual,

http://www.dms.at/kopi/docs/kopi.html (2001).

19. M. I. Gordon et al., A Stream Compiler for Communication-Exposed Archi-

tectures, in Proc. of the 10th Int. Conf. on Architectural Support for Program-

ming Languages and Operating Systems, San Jose, CA (October 2002), URL http:

//cag.1cs.mit.edu/commit/papers/02/streamit-asplos.pdf.

20. A. A. Lamb, W. Thies, and S. Amarasinghe, Linear Analysis and Optimization of

Stream Programs, in Proc. of the SIGPLAN ’03 Conf. on Programming, Language

Design and Implementation, San Diego, CA (June 2003).

21. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchronous data-flow pro-

gramming language LUSTRE, Proc. IEEE 79(9):1305–1320 (September 1991), URL

citeseer.nj.nec.com/halbwachs91synchronous.html.

22. G. Berry and G. Gonthier, The Esterel Synchronous Programming Language: Design,

Semantics, Implementation, Science of Computer Programming, 19(2):87–152 (1992).

23. E. A. Lee, Overview of the Ptolemy Project, UCB/ERL Technical Memorandum

UCB/ERL M01/1, Dept. EECS, University of California, Berkeley, CA (March 2001).

24. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Data-

flow Graphs, Kluwer Academic Publishers (1996), URL http://www.wkap.nl/book.htm/0-

7923-9722-3, 189 pages.

25. U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles, Stream Scheduling,

in Proc. of the 3rd Workshop on Media and Streaming Processors, pp. 101–106 (2001).

26. S. Seneff, Speech transformation system (spectrum and/or excitation) without pitch

extraction, Master’s thesis, Massachussetts Institute of Technology (1980).

27. 3rd Generation Partnership Project, 3GPP TS 25.201, V3.3.0, Technical Specification

(March 2002).


