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Breakable Dependences
In an Iterative Convergence Algorithm

while (!converged) { Examples:

for i = 1 to n { * Floyd Warshall algorithm
refine(soln[i]) | ¢« Monotonic data-flow analyses
} * Linear algebra solvers

}

e Stencil computations
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Stale Reads Execution Model
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 Execution valid under staleReads model iff

Akin to Snapshot Isolation for databases




Stale Reads with Reduction

Wy, VI@R c W, W, Wk cw,
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(WL \ W) n (W,\ W3¥) = {}

reduction R := (var,O0) where

1. Every access to var is an update using operation O
2. Operator O is commutative and associative
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StaleReads Commit(i):
Vst j<i wWrites(i) Nnwrites(j) = {}




Alter Annotations

while(error < EPSILON) { //convergence loop
error = 0.0;
for(uint32_ti=1;i < grid->xmax - 1; ++i) {
[StaleReads, (error, max)]
for(uint32_tj = 1; j < grid->ymax - 1; ++j) {
for(uin32_t k = 1; k < grid->zmax - 1; ++k) {
oldValue = grid[i][j][k]
grid[il[j1[k] = a * grid[i][j][k] + b * AddDirectNbr(grid)
+ ¢ * AddSquareNbr(grid) + d * AddCubeNbr(grid);
error = max(error, (OldValue,GridPtr[i][j]1(k])));



Test Driven Parallelism Inference

Exhaustive parallelization engine

« For each annotation run all 98 S
sequential Test suite
test cases, record outcome orogram
e outcome of a single run
success, failure € (crash, Exhaustive
timeout, high contention, output parallelization engine
mismatch)
» Output mismatch: assertion Candidate Parallel
I I I rogram
failures or floating point prog User

difference < 0.01% validation



Assisted Parallelism

Prior art ALTER

Automatic parallelism Assisted parallelism

Test suite

Sequential
program

Sequential
program

Exhaustive
parallelization engine
/’_.-—
Candidate Parallel
program

Conservative

Compiler
analysis

Parallel Ipdser'
_ e, Validation

program > Auto tune
for perf
Preserve program

dependences Preserve functionality



Benchmarks
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Experimental Setup

« Experiments on a 2 x quad core Xeon processor

* Alter transformations in Microsoft Phoenix
compiler framework

« Comparison with dependence speculation and
manual parallelization of 2 applications



Results : Baseline

6 -

5 -

4 -

3 - No scope for
dependence

2 - speculation

1 - vd

0 |r_ I

- - - . - S S S S S e e .

M speculate
m DOALL

No scope for
dependence
speculation

|




Results : Alter
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Results: Manual Parallelization

N Good speedup with

fine grain locking ® manual
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In the Paper...

ALTER multi-process memory allocator
ALTER collections

« Usage scenario’s for ALTER
* Profiling and instrumentation overhead
DOALL parallelism and speculation within ALTER



Related Work

 Test-driven parallelization

— QuickStep: similar testing methods for non-deterministic
programs, offers accuracy bounds [Rinard 2010]

* Assisted parallelization [Taylor 2011] [Tournavitis 2009]

— Paralax: annotations improve precision of analysis,
out dependences respected [Vandierendonck 2010]
 Implicit parallelization [Burckhardt 2010]
— Commutative annotation for reordering[August 2007, 11]
— Optimistic execution of irregular programs [Pingali 2008]
— As far as we know, stale reads execution model is new




Conclusions

Breakable dependences must be exploited in order
to parallelize certain classes of programs

We propose a new execution model, StaleReads, that
violates dependences in a principled way

Adopt database notion of Snapshot Isolation for
loop parallelization

ALTER is a compiler and deterministic runtime system
that discovers new parallelism in programs

« We believe tools for assisted parallelism can help to
overcome the limits of automatic parallelization



