ALTER: Exploiting Breakable
Dependences for Parallelization

Kaushik Rajan
Abhishek Udupa
William Thies

AR Y

Parallelization Reconsidered

Are there dependences No > DOALL Parallelism
between loop iterations? —> Sequential program
[E Yes q prog

Parallelization Reconsidered

No DOALL Parallelism

between loop iterations? —> Sequential-pregram

Our Technique:

| . . 2.0x speedup
Clustering Gauss Seidel ~ K-Means on four cores

Are there dependences

Agglomerative ~ SG3D Floyd-Warshall

Break

Commutativity
Dependences!

Analysis No
Speedup

Speculation

Speedup

Dependences Dependences can Dependences can
are Imprecise be Reordered be Broken

Parallelization Reconsidered

Are there dependences No > DOALL Parallelism

between loop iterations? —> Sequential-pregram

Agglomerative ~ SG3D Floyd-Warshall Our Technique:

Clustering Gauss Seidel K-Means ALTE R

Commutativity Break

Analysis No QL Ll L
Speedup

Speculation

Speedup

Dependences Dependences can Dependences can
are Imprecise be Reordered be Broken

Outline

Breakable Dependences: Stale Reads
» Deterministic Runtime System
Assisted Parallelization

* Results

other detalls in the paper

Breakable Dependences
In an Iterative Convergence Algorithm

while (!converged) { Examples:

for i = 1 to n { * Floyd Warshall algorithm
refine(soln[i]) | ¢« Monotonic data-flow analyses
} * Linear algebra solvers

}

e Stencil computations

sequential ALTER: stale reads privatized

ﬁ
[Wllj-lcl)LE } ‘ W[I)-I(I)LE} WHILE
ré h shared
[merge memory

Stale Reads Execution Model

W, W,

[:) /_A_\
1 3 i 2 5 4~ 7 6 3
Win W, =}
Stale reads

 Execution valid under staleReads model iff

Akin to Snapshot Isolation for databases

Stale Reads with Reduction

Wy, VI@R c W, W, Wk cw,

1 3 2 5 4 7 6 3

(WL \ W) n (W,\ W3¥) = {}

reduction R := (var,O0) where

1. Every access to var is an update using operation O
2. Operator O is commutative and associative

el

Ny

Deterministic Runtime System'

I
|

FORK() i

l private private !

y P ¢ [

e body(1) e body(2) * body(3) :

with RW with RW with RW | I

EXECUTE() logging logging logging :
l |

I

Commit? |

JOIN() |

I

StaleReads Commit(i):
Vst j<i wWrites(i) Nnwrites(j) = {}

Alter Annotations

while(error < EPSILON) { //convergence loop
error = 0.0;
for(uint32_ti=1;i < grid->xmax - 1; ++i) {
[StaleReads, (error, max)]
for(uint32_tj = 1; j < grid->ymax - 1; ++j) {
for(uin32_t k = 1; k < grid->zmax - 1; ++k) {
oldValue = grid[i][j][k]
grid[il[j1[k] = a * grid[i][j][k] + b * AddDirectNbr(grid)
+ ¢ * AddSquareNbr(grid) + d * AddCubeNbr(grid);
error = max(error, (OldValue,GridPtr[i][j]1(k])));

Test Driven Parallelism Inference

Exhaustive parallelization engine

« For each annotation run all 98 S
sequential Test suite
test cases, record outcome orogram
e outcome of a single run
success, failure € (crash, Exhaustive
timeout, high contention, output parallelization engine
mismatch)
» Output mismatch: assertion Candidate Parallel
I I I rogram
failures or floating point prog User

difference < 0.01% validation

Assisted Parallelism

Prior art ALTER

Automatic parallelism Assisted parallelism

Test suite

Sequential
program

Sequential
program

Exhaustive
parallelization engine
/’_.-—
Candidate Parallel
program

Conservative

Compiler
analysis

Parallel Ipdser'
_ e, Validation

program > Auto tune
for perf
Preserve program

dependences Preserve functionality

Benchmarks

BENCHMARK | ALGORITHM TYPE PARALLELISM LOOP WGT

AggIoCIust

GSdense
GSsparse
FloydWarshall

\SG3D)

BarnesHut
FFT
HMM

e

Genome

SSCA2

K-means

Labyrinth
\ _/

Branch & bound

Dense algebra

Sparse algebra

Dynamic programming

Structured grids
N-body methods

Spectral methods
Graphical models
Bioinformatics
Scientific

Data mining

Engineering

STALE READS

STALE READS
STALE READS
STALE READS

STALE READS, (error, max)

DOALL
DOALL
DOALL
STALE READS

STALE READS

STALE READS, (delta, +)

89%
100%
100%
100%

96%

99.6%
100%
100%

89%

76%

89%

99%

Experimental Setup

« Experiments on a 2 x quad core Xeon processor

* Alter transformations in Microsoft Phoenix
compiler framework

« Comparison with dependence speculation and
manual parallelization of 2 applications

Results : Baseline

6 -

5 -

4 -

3 - No scope for
dependence

2 - speculation

1 - vd

0 |r_ I

- - - . - S S S S S e e .

M speculate
m DOALL

No scope for
dependence
speculation

|

Results : Alter

6 _
> M staleReads
4 - m QutOfOrder
3 - M speculate
5 I m DOALL
O [[[[[[[[[
X @ 2 O 0 X e O &
\O c,)b CQQ S < \2\ Q}\ S '\
V‘QOQO) (gc’ \Q’bé\) =

Results: Manual Parallelization

N Good speedup with

fine grain locking ® manual

_ W staleReads
1
! W OutOfOrder

M speculate

6
5

Comparable
4 - performance
3 -
2 - -=~’ W DOALL
O [

6@ ‘oQ’

\}(\&
(}e’b\
SR

In the Paper...

ALTER multi-process memory allocator
ALTER collections

« Usage scenario’s for ALTER
* Profiling and instrumentation overhead
DOALL parallelism and speculation within ALTER

Related Work

 Test-driven parallelization

— QuickStep: similar testing methods for non-deterministic
programs, offers accuracy bounds [Rinard 2010]

* Assisted parallelization [Taylor 2011] [Tournavitis 2009]

— Paralax: annotations improve precision of analysis,
out dependences respected [Vandierendonck 2010]
 Implicit parallelization [Burckhardt 2010]
— Commutative annotation for reordering[August 2007, 11]
— Optimistic execution of irregular programs [Pingali 2008]
— As far as we know, stale reads execution model is new

Conclusions

Breakable dependences must be exploited in order
to parallelize certain classes of programs

We propose a new execution model, StaleReads, that
violates dependences in a principled way

Adopt database notion of Snapshot Isolation for
loop parallelization

ALTER is a compiler and deterministic runtime system
that discovers new parallelism in programs

« We believe tools for assisted parallelism can help to
overcome the limits of automatic parallelization

