
An Empirical Study of License Violations in Open
Source Projects

Arunesh Mathur∗, Harshal Choudhary†, Priyank Vashist‡, William Thies§, Santhi Thilagam¶

∗ † ‡ ¶ National Institute of Technology Karnataka, Surathkal
§ Microsoft Research India

Abstract—The use of Open Source Software (OSS) components
in building applications has presented the challenge of integrating
them in a way such that the licenses of the individual components
do not conflict with each other and if applicable, the overall
license of the application. These conflicts lead to violations,
with many having far reaching legal consequences. While
proprietary software firms are often plagued with the risks
of not satisfying the clauses of OSS licenses, we hypothesize
that a large degree of code reuse within the OSS community
poses similar threats too. Through an analysis of 1423 projects,
consisting of approximately 69 million non-blank lines of code
from Google Code project hosting, we validate instances of code
reuse between projects by comparing their licenses. Our results
discover four violations, evaluated by searching for files that
share similar content. Additionally, we present statistics on code
reuse within the set of projects.

Index Terms—Software reusability, Open source software,
Legal factors

I. INTRODUCTION

Over the years, the increasing popularity of the open source
movement has resulted in a collaborative environment for soft-
ware developers to create and share software components and
libraries that can be used to provide a variety of functionality.
These components usually comprise of projects or parts of
projects, that can be plugged into new or existing software,
bringing about savings in time and money. Potential users of
such components (for example, FFmpeg1) include both —
proprietary software developers (close source products like
Bits on the Run, MovieGate etc.) and developers from the OSS
community (open source projects like VLC, MPlayer etc).

Licenses also have a major influence the degree of reuse of
such a component. For example, a few pieces of the FFmpeg li-
brary are distributed under the GNU Lesser General Public Li-
cense (LGPL), which while supporting free software, enables
a certain degree of reuse in proprietary software as well. Every
such license provides certain restrictions and allowances, but
due to wide variety of approved open source licenses (69 as
of May 2012), legal issues between licenses emerge when
components with incompatible licenses are integrated together.
This has been characterized as the license-mismatch problem
[1]. For instance, the GNU General Public License (GPL) has
two popular versions that are widely accepted – version 2 and

1FFmpeg is a widely used multimedia library (http://ffmpeg.org)

version 3; the latter however, is not backwards compatible
with components that are released under version 2 only (i.e.,
not upgradable to a later version). In situations where they
are left with little choice, other than to combine components
released under incompatible licenses, developers have known
to form a new license that is compatible with each of the
licenses of the individual components. The formation of new
licenses to combat the license mismatch problem is known
as license proliferation [2]. License proliferation results in
further incompatibilities and has been strongly discouraged by
the Open Source Initiative (OSI, http://opensource.org), which
has set up a License Proliferation Committee to specifically
tackle this problem [3].

Proprietary firms lie potentially at a greater risk of
license infringements when trying to incorporate OSS
into their products, since all OSS licenses require source
code to be made available for everyone to examine;
most firms deal with such discrepancies through their
legal departments. Perhaps one of the most famous GPL
violation involved the use of BusyBox – an amalgamation
of Unix utilities for embedded devices – in the proprietary
products of Samsung, Westinghouse, JVC amongst others,
that resulted in multiple court cases in the United States.
In one such case, the developers of BusyBox, with the
aid of the Software Freedom Law Center (SFLC), sued
Westinghouse for $137,865, comprising of damages
and lawyer’s fees, and ordered all infringing products
to be donated to charity [4] [5]. Recently, firms like
BlackDuckSoftware (http://www.blackducksoftware.com),
OpenLogic (http://www.openlogic.com) and Palamida
(http://palamida.com) have begun providing services to clients
that plan on using OSS components in their products by
helping them analyze the possible legal outcomes. Code
search engines like Krugle (http://krugle.org) and Koders
(http://koders.com) have also incorporated code search options
that allow filtering of results based on license.

Due to the high degree of code reuse within the open
source community, we believe that open source developers
share similar concerns too. In one such instance, Emacs
(http://www.gnu.org/software/emacs), a widely used GPL’ed
text editor recently fixed a violation [6]; its developers had
failed to make publicly available the sources of a certain
grammar which the GPL required them to do. Through this

empirical study, we aim to discover cases of license violations
in a vast array of open source projects by tracking cases of
code reuse, and subsequently validating them to ensure fair
license use. In order to achieve this, we first retrieve a large
repository of open source projects and scan for code clones
between projects, using the approach of a plagiarism detection
tool – MOSS (Measure of Software Similarity) [7], which has
been tried on a variety of programming languages.

The rest of the paper is organized as follows: Section II
presents the related work, Section IV briefly describes open
source licensing, Section III presents the sample set selection
process, Section V presents the approach behind this study,
Section VI presents the results and findings, In Section VII,
we conclude the paper, with suggestions for future work.

II. RELATED WORK

Reasons and motivations for code reuse in OSS have been
studied previously. Through a case study involving 15 open
source projects, von Krogh et al. [8] show that there is active
reuse of code, algorithms and methods in the open source
community. Haefliger et al. [9] describe the behavior of open
source developers – comparing them with their counterparts in
corporate firms based on incentives to reuse code by examining
a set of 6 open source projects. The authors point out that
OSS developers reuse code to mitigate development costs, to
avoid working on mundane problems and instead focus on the
difficult ones or quickly release production code.

There is a notable lack of large scale analysis of code
repositories that track reuse of OSS. Audris Mockus [10] quan-
tifies large scale code reuse in popular and large open source
projects and confirms the existence of more than 50% of the
files in more than one project, by finding directories of source
code files that share several file names and only selecting those
cases where the fraction of files was greater than a threshold.
While this may seem as a reasonable heuristic, comparing
the content of source code files would seem to provide a
tighter bound than by just comparing their file names. The
performance of both these techniques is captured in a study
of code reuse in the FreeBSD project by Chang and Mockus
[11]. The authors report that comparing files based on their
content produces results with fewer false positives than file
name based comparison, which also fails to detect the same
file with a different name.

The legal ramifications of code reuse in the context of
open source licenses has been a lesser explored topic. Ger-
man and Hassan [1] develop patterns and models to help
developers solve conflicts and compatibility issues between
open source licenses. Sojer et al. [12] analyze the risks
professional software developers face when reusing code in
an ad-hoc fashion from the Internet. Based on a survey of 869
professional developers, the authors conclude that ad-hoc code
reuse from the Internet is common and that most developers
are oblivious of the legal implications of such code reuse.
Recently, tools that can detect open source license violations at
the binary level – Fingerprint Generator/Detector (FiGD) [13]

and Binary Analysis Tool (BAT) [14] – have been developed.
We, however, are looking for license violations on the source
code level, rather than the binary level.

The vast field of code clone detection tools that operate
at the source level have been surveyed in [15]. Despite the
presence of a large number of such tools, there have been no
reports of their performance on a large scale. A large number
of these tools are used for finding clones in smaller sets and
focus on improving the quality of results rather than scaling.

III. SAMPLE SET SELECTION

A study of this magnitude requires a large source
of open source repositories containing projects released
under popular open source license(s), thereby enabling
clear compatibility checks. We examined popular code
hosting services like Google Code project hosting
(http://code.google.com/hosting), GitHub (http://github.com)
and SourceForge (http://sourceforge.net), which have a wide
variety of open source projects managed by developers over
the web. Google Code offers a set of 10 popular open source
licenses to choose from, while SourceForge offers a choice of
over 80 licenses. GitHub encourages developers to indicate
the license in a COPYING/LICENSE file – however, the
absence of such a file conceals the license of the project. All
the three services allow project files to be browsed online or
cloned to a local drive.

We chose Google Code Hosting over the GitHub and
SourceForge due to the cogent set of licenses it offers, thus
making it easier to identify license violations. To get a
good mix of projects, we started by selecting projects with
programming languages tags such as C, CPlusPlus, Java,
Python, JavaScript, ObjectiveC etc. We then added projects
tagged with Database, Game, Web, Google, Linux, Windows,
MacOSX, iPhone, Android, Graphics etc. During this phase,
for each project, we pinned down its license, repository URL
and Activity level. The Activity level describes the degree
of contribution of the developers over time, and can take
values High, Medium, Low or None. A High level indicates
that the project is in active development and is contributed
to frequently, while None indicates it has had very little/no
activity.

After forming the list of projects, we retrieved snapshots
of their version control repositories using the URLs stored
previously. For projects having no source code in their
git/svn/hg branch, we first checked to see if they been had
migrated to a different location (usually mentioned on the
project homepage) and in all such cases, we retrieved code
from the new location. In all other scenarios, we scanned the
Downloads tab for potential source code files. To simplify
this process, we wrote special tools and scripts to automate
and ignore any non-text files that could be present in the
project. In total, we managed to gather a set of 1423 projects,
all retrieved between January and March 2012.

IV. OPEN SOURCE LICENSING

Licenses provide copyright holders, a means of delegating
permissions to distribute, modify or build derivative works
to potential users of their software. The OSI lists a set of
requirements that any license must fulfill on order to be
recognized as a valid open source license, called the Open
Source Definition (OSD) [16]. The requirements of the OSD
include: (i) Allow free redistribution of and modification of
the code; (ii) Make the source code available to the public
(via. the Internet); (iii) Allow derived works to be distributed
under the original license; (iv) Not discriminate against any
group or individual; (v) Must not be specific to a technology
and not restrict any software. Open source licenses are broadly
classified as Copyleft/Restrictive and Permissive licenses. Per-
missive licenses do not add constraints on the licensing of
the derivative code, except for a reference/citation and that
the license text be untouched in the modified/distributed code.
Copyleft licenses on the other hand, influence the license of
the derived/modified code by necessitating it to be released
under the license of the original software.

Google Code project hosting offers a set of eight different
licenses to choose from: (i) GNU General Public License
version 2 (GPL v2); (ii) GNU General Public License version
2 (GPL v3); (iii) GNU Lesser General Public License version 3
(LGPLv3); (iv) Apache License version 2.0 (APLv2); (v) MIT
License; (vi) New BSD License/3-Clause (New BSD); (vii)
Artistic License/GPL (AL/GPL); (viii) Mozilla Public License
version 1.1 (MPLv1.1). The GPL is a strong copyleft license,
while the New BSD/MIT/APLv2 licenses are non-copyleft and
permissive. All other licenses lie in between. Apart from these
eight choices, Google Code provides the Other Open Source
option to use all other licenses. Table I describes compatibility
amongst these licenses.

More recently, multi-licensing – the practice of offering a
choice of licenses to the licensee – has to a certain extent
sorted license compatibility, but it presumes familiarity with
a wide set of licenses. Examples of Multi-licensed soft-
ware include or example, the PERL license, which offers a
choice between the Artistic License and the GPL and JQuery,
which offers using the GPL or the MIT license. The Mozilla
projects were tri-licensed (MPLv1.1 or later, GPLv2.1 or later,
LGPLv2.1 or later) initially, but have recently migrated to
MPLv2.0.

V. RESEARCH METHOD

This section describes two topics: (i) Our definition of
license violations and how code reuse assists us in detecting
them; and (ii) The procedure to detect code reuse in the sample
set of open source projects (Section III).

A. Defining reuse and violations

Before describing the ideas behind this study, it is crucial to
establish the definitions of code reuse and license violations.
We are searching for cases where one project incorporates a
set of source code files (or a part of the set) from another
project in the same corpus. Such source code files are those

Program P 1

(License L1)

Project M

Program P 2

Project Q
(License L2)

Fig. 1. Illustration of a license violation

that belong to the provider project and are not, for example,
a third party library (outside of the corpus) that both projects
may coincidentally use. We are not interested in accredited
lines of code that may be reused between projects, since such
reuse is highly granular and difficult to detect.

Figure 1 illustrates the definition of a license violation. Let
Program P 1, a component of project M and licensed under
L1, be reused as Program P 2 in project Q, which is licensed
under L2. P 2 is essentially the same as P 1 in all cases except
when it extends P 1 in the form of a derived work. Based on
these notations, we perform the following check: Can code
licensed under L1 be used in a project licensed under L2?
For example,

1) L1 and L2 are the the MPLv1.1 and the GPL re-
spectively; both these licenses are incompatible and
components under these licenses cannot be integrated
together.

2) L1 and L2 are the GPL and New BSD licenses re-
spectively; although compatible, the GPL requires the
associated work to be conveyed under the same license.

This check captures the central idea behind a violation –
the license of a third party component might affect the choice
of the release license of a project that uses the component.

B. Architecture

Plagiarism detection tools find similarity between small
pieces of text/code and are widely used in academic set-
tings, usually for checking assignments turned in by students
and submissions to workshops/conferences. Our approach is
borrowed from the popular plagiarism detection tool MOSS,
developed by researchers at Stanford University, which is
used to detect similarities in programming assignments and
supports a variety of languages. MOSS begins the process of
detecting code by building hashes of k–grams of source code
files, and then selecting those pair of files that have the most
common hashes, for further comparison. This pipeline helps
in scaling the comparison process efficiently, while keeping it
fundamentally, independent of the programming language.

Figure 2 depicts the architecture of this system. It consists of
three phases – Preprocessing, Fingerprinting and Comparing.

RELEASE PROJECT UNDER

S
O

U
R

C
E

L
IB

R
A

R
Y

L
IC

E
N

S
E License GPLv2 only GPLv3 EPLv1.0 MPLv1.1 LGPLv3 MIT New BSD APLv2

GPLv2 only – No No No No No No No

GPLv3 No – No No No No No No

EPLv1.0 No No – Varies No Yes Yes Yes

MPLv1.1 No No Varies – No Yes Yes Yes

LGPLv3 2 No Yes No No – No No No

MIT Yes Yes Yes Yes Yes – Yes Yes

New BSD Yes Yes Yes Yes Yes Yes – Yes

APLv2 Yes Yes Yes Yes Yes Yes Yes –

TABLE I
VIOLATION MATRIX FOR GOOGLE CODE PROJECT HOSTING’S LICENSES. EACH CELL (A,B) REPRESENTS WHETHER A LIBRARY RELEASED UNDER

LICENSE A CAN BE USED BY A PROJECT RELEASED UNDER LICENSE B.

Preprocessing

Fingerprinting

Comparing

Fig. 2. Architecture of MOSS

The Preprocessing stage removes all superfluous features of
the source content such as whitespace, capital letters, new lines
etc., which are undesirable to determine similarity between
files. Since MOSS has primarily been used in academic
settings, it replaces all instances of variable declarations with
a common symbol before it begins matching files, as students
may choose to modify variable names to evade such tools.
However, Haefliger et al. [9] observed that in the open source
world, code reuse is largely, black–box (unmodified). Hence,
we do not modify or replace any variable declarations with
holders.

Once the source code is preprocessed, the Fingerprinting
stage starts by dividing it into k–grams, which are continuous
substrings of size k. These are hashed, and subsequently,
a subset of these are selected as the fingerprint of a file.
Assuming collision free hashes, if two files share the same
hash, then it is very likely that they share the same k–gram.
For a large set of files, hashing can be a very computationally
intensive process for large values of k. Rabin-Karp’s rolling
hash function reduces this complexity by computing the hash
of the ith k–gram from the hash of the i − 1th k–gram. For
example, consider the k–gram (c1 c2 . . . ck−1 ck), with each

ci representing the ith character. Given a base b, the k–gram’s
hash H(i) is calculated as:

H(i) = c1 ∗ bk−1 + c2 ∗ bk−2 + ... + ck−1 ∗ b + ck (1)

Similarly, the hash H(i + 1) of the k–gram (c2 c3 . . . ck

ck+1) is:

H(i + 1) = c2 ∗ bk−1 + c3 ∗ bk−2 + ... + ck ∗ b + ck+1 (2)

Writing H(i + 1) in terms of H(i):

H(i + 1) = (H(i)− c1 ∗ bk−1) ∗ b + ck+1 (3)

Thus, calculating the hash of H(i + 1) from H(i) requires
two additions and two multiplications, which makes hashing
successive k–grams extremely fast. Since for arbitrary b, the
value of H(i) may exceed the largest number that can be
stored on a machine, H(i) is stored as H(i) % m, where m is a
prime number. The choice of m is crucial to this computation,
since a poor selection could lead to an increase in collisions.

For a file of length n, a total of n − k + 1 hashes are
generated. When computed for a large number of files, the
hashes require a lot of storage space and thus reduce efficiency
for the later stages. To counter this, it is preferred to select
a subset of these hashes, and store them as the fingerprint
of a file. This is achieved through the Winnowing algorithm
defined as follows:

Let a window of size w be a series of w continuous hashed
k–grams (hi, hi+1, . . ., hi+w−2, hi+w−1). From each window,
a hash is selected as follows:

1) Select the smallest hash in a window
2) In case of a tie, select the rightmost smallest hash
We store the hashes that form the fingerprints of files in

a relational database as two tables. The first table (schema:
file id, project name, file name), holds the details of
each file, and the second table (schema: file id, hash,

2LGPLv3 used as a shared library

line numbers) holds the fingerprints. The file id attribute
from the first table, the primary key, serves as the foreign key
for the second table.

The Comparison phase starts once the fingerprints for all
the files in every project have been generated. To find files
similar to any given source code file d in project p, we select
those files that have the highest number of hash matches with
d and are outside of p. Files that have the matched hash count
greater than a given threshold t, are those that have a very high
probability of being similar to d. To ensure that the matches
obtained as a result of this phase are not false positives, it
is important to ignore boilerplate text. Open source licenses
usually require the license user to place legal boilerplate at
the beginning of every file, which may lead to increasing
the number of matched hashes between files. To avoid this,
we hash the headers of all licenses offered by Google Code
and ignore all such hashes when matching files. Finally, we
pretty print all pairs of matched files to aid us in discarding
all remaining false positives.

VI. RESULTS

A. Repository statistics

Through our sample selection process, we retrieved 1,423
projects translating to 340,164 text files, consisting of about
69 million non-blank lines of code. Figure 3 shows the count
of projects for each license. The GNU GPLv3 and GPLv2
constituted nearly 46% of all licenses and this is in accordance
with their popularity in the open source space [17]. The
EPLv1.0 and MPLv1.1 were the least used licenses, given
their are incompatibility with the popular GPL and prohibitive
reuse. Both these licenses are specific to the Eclipse and
Mozilla community and generally, are rarely used outside of
those communities.

212

801

355

55

0

200

400

600

800

1000

High Medium Low None

C
o

u
n

t

Project Activity

Fig. 4. Distribution of projects based on Google Code activity.

Figure 4 shows the count of projects based on Google Code
activity. While the activity of a project can change over time,
depending on numerous factors, we capture the activity status
at a particular instance for the purpose of this study. 56.29%
of the selected projects were Medium-active compared to the
3.87% of None-active projects.

B. Code Reuse

Our initial experiments dealt with choosing values for k,
m and t judiciously, as they directly influence the results of
the procedure described in Section V-B; a poor choice leads
to multiple false positives between files. The value of k and t
primarily depend on the nature of the document and the strings
it contains – in practice however, we observed that values of
40 and 45 respectively, work sufficiently well, even on source
code files written in a variety programming languages. To
determine a suitable value for m, we conducted two tests on
about 10 MB of text – first, with the largest 32-bit prime,
which led to 128 collisions and second, with the largest 64-bit
largest prime number, which led to no collisions at all. A total
of 31,187,119 hashes were generated at the end of V-B. While
we did find false positives, they were largely mitigated by
ignoring hashes of license headers at the beginning of source
files.

We discovered 103 instances of code reuse in the set of
projects, listed in Table III. Figure 5 presents the activity levels
of the reused projects. Although High and Medium active
projects were reused equally (16 each), it is worth nothing
that High active projects constitute only 14.90%, where as
Medium active projects constitute 56.29% of the total set of
projects. Consequently, the reuse rate for the former (7.56%)
is higher than than the latter (2.00%). This is in conformity
with the observations made in [9] – ratings and certification
influence the popularity of code, as poorly written code can
be detrimental to any system. Projects that were actively
developed and updated were reused more frequently and this
is true for both corporate firms, as well as the open source
world.

16 16

4

1

0

3

6

9

12

15

18

High Medium Low None

C
o

u
n

t

Project Activity

Fig. 5. Distribution of reused projects based on Google Code activity.
Although High and Medium active projects are equally used, the reuse rate
for the former is nearly 3.8 times the latter.

C. License violations

Table II details the license violations out of the instances of
code reuse listed in Table III. The first and second columns in-
dicate the provider and acceptor licenses respectively, with the
acceptor license violating the provider license. We observed a
lack of proper use of the acceptor license in 3 out of the 4
cases of violations. For instance, to apply the GPL to a project,

173

425

222

10 13

154

23

133

215

55

0

100

200

300

400

500

MIT/X11 GPLv3 GPLv2 EPLv1.0 MPLv1.1 LGPLv2 AL/GPL APLv2.0 New BSD Others

Co
u

n
t

License Name

Fig. 3. Distribution of projects based on license. The General Public Licenses (GPL) together constitute nearly half of all licenses.

Code provider [Provider license] Code acceptor [Acceptor license] Acceptor license used correctly?

Flvplayer [MPLv1.1] Khan Academy [Other Open Source] no

Arduino [GPLv2] Micropendous [MIT] yes

Miranda [GPLv2] Toptoolbar [LGPLv3] no

Miranda [GPLv2] Wi2geoplugin [MIT] no

TABLE II
INSTANCES OF LICENSE VIOLATIONS IN THE SET OF PROJECTS

the Free Software Foundation lists the following requirements
[18] :
• Add a copyright statement to each source code file along

with the copyright permission text:

This file is part of Foobar.

Foobar is free software: you can redistrib-
ute it and/or modify it under the terms of
the GNU General Public License as publishe-
d by the Free Software Foundation, either
version 3 of the License, or (at your opti-
on) any later version.

Foobar is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERC-
HANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public Licen-
se for more details.

You should have received a copy of the GNU
General Public License along with Foobar.
If not, see <http://www.gnu.org/licenses/>.

• Include the GPL license in a text file in the project tree.
• Place the Copyright notices of the GPL at the beginning

of every file.
Therefore, these 3 cases cannot be truly be considered as

cases of violations, as the license of the acceptor project
in each of these cases is in principle, unclear. We classify
such violations as violations of recommended practice, where
recommended practice refers to meeting the requirements
listed by the license. In other words, had the developers of
the acceptor project applied all of the clauses of the license
they intended to use (mentioned on the Google Code project

homepage), the would have violated the provider project’s
license in the process. The Acceptor license used correctly?
column indicates whether the acceptor license was applied
correctly.

In the following sections, we present the details of each
license violation and suggest possible steps that can be
taken to help erase the violation, such as using alternate
libraries or choosing an alternate license, wherever applicable.

1) Flvplayer and Khan Academy: Flvplayer is a flash
player library that can be plugged into websites for
streaming multimedia and is licensed under the MPLv1.1
(http://code.google.com/p/flvplayer). The MPLv1.1 allows a
limited amount of copyleft by requiring all modifications to
MPLv1.1 licensed files and files that borrow MPLv1.1 licensed
code, to be released under the same license. This library is
used by Khan Academy, an online e-learning platform that
provides video tutorials for a variety of subjects on its website
(http://code.google.com/p/khanacademy), seemingly to stream
flash content. The developers of the Khan Academy repository
however, fail to mention its license explicitly, as the Other
Open Source option advises them to. This results in a violation,
as the MPLv1.1 may conflict with the possible choices of
the overall license of the project. For example, a choice
of any of the GPL licenses (v2 or v3) would make the
release incompatible. Most of the reuse by Khan Academy
is without any modification; all derivations and modifications
of the Flvplayer library have been credited according to the
requirements of the MPLv1.1.

There exist other alternatives to Flvplayer –
OSFlv player (http://www.osflv.com), f4player
(http://gokercebeci.com/dev/f4player) and flowplayer

(http://flowplayer.org) – all licensed under the GPLv3,
that could serve as potential replacements for the less
compatible MPLv1.1 licensed Flvplayer. However, we are
unsure if the integration of these alternatives would be
feasible from a technological perspective.

To notify the developers of Khan Academy of this violation,
we opened an issue on their new GitHub repository. One
of its developers acknowledged the lack of of a license;
unfortunately the repository has been moved or deleted at the
time of writing this paper.

2) Arduino and Micropendous: Arduino is a GPLv2 (or a
later version) licensed software suite for programming Arduino
microcontroller boards (http://code.google.com/p/arduino).
The Micropendous project, like Arduino, is a suite for
programming hardware boards with the provision to run
Arduino specific software (http://code.google.com/p/arduino)
on those. It houses the Arduino board firmware with
modifications, as a part of its distribution, but is licensed
under the liberal MIT license. The GPLv2 being copyleft in
nature, requires the distribution to be to be under a license
that does not violate its norms. Micropendous is however,
not obligated to be GPLv3 licensed, since the GPL does not
affect other code that is part of a larger work. Therefore,
this violation can be rectified by changing Micropendous’s
license to Other Open Source, and choosing a combination
of the MIT and GPLv2 license, as the overall project license,
i.e., the Arduino library remains under its original license –
the GPLv2 and the Micropendous specific code uses the MIT
license. In order to have the overall projects license as the
MIT license, the developers of Micropendous would have to
find an alternative Arduino library that is released under the
MIT license.

We posted the details of this violation to the Micropendous
discussion forum/mailing list and the project license has since
then, been changed to Other Open Source.

3) Miranda and Toptoolbar: Miranda is a multi-protocol
instant messenger licensed under the GPLv2 (or a later
version) (http://code.google.com/miranda) and is reused
by Toptoolbar (http://code.google.com/p/toptoolbar), a
plugin/extension that displays a toolbar for quick access of
commonly used functions of the Miranda IM client and is
released under the LGPLv3 (or a later version). Since the
GPL requires all derived work to be released under the
same license, this use case results in a violation. However,
as the developers of Toptoolbar have the option to choose
the terms of either the GPLv2 or GPLv3, this results in two
different violations. Choosing the GPLv2 can be ruled out,
since the GPLv2 and the LGPLv3 are incompatible; whereas,
although the GPLv3 and LGPLv3 are compatible, choosing
the GPLv3 would require Toptoolbar to be conveyed under
the GPLv3. This impasse can however, still be solved by
releasing Toptoolbar under the GPLv2 (or a later version)
and licensing all derived works under the same license. The
code reused from the Miranda SDK consists of user interface

components that are Miranda specific and thus results in
non-availability of alternatives.

4) Miranda and Wi2geoplugin: Wi2geoplugin is another
plugin/extension that enables location based sharing in the
Miranda IM client and is licensed under the permissive MIT
license (http://code.google.com/p/wi2geoplugin). By using and
linking against the GPL’ed code of Miranda, Wi2geoplugin
forms a derivative work, which is required to be released
under the GPLv2 (or a later version) and thus results in a
violation. Like Toptoolbar, Wi2geoplugin borrows code from
the Miranda SDK to build and extend the user interface and
hence, makes it difficult to suggest alternatively licensed code.
However, by licensing Wi2geoplugin under the GPLv2 (or a
later version), its developers can rectify the violation

We contacted the developers of both, Toptoolbar and
Wi2geoplugin describing these violations and seeking their
opinion, but did not receive any correspondence in return till
the time of writing this paper.

VII. CONCLUSION & FUTURE WORK

With a large number open source components just a click
away, license compatibility is quickly turning into an intricate
scenario, that needs to be dealt with diligence. The legal com-
plications involved in using open source licenses is imperative
to the success of any project. Crucial to the core of this study
is the collection of open source projects from project hosting
websites; intuitively, one may not expect mature GNU projects
to be in violation.

It is important to emphasize the validity of our results. While
we have focused on reuse as a metric to detect violation, we are
unsure of the manner in which the code is actually used inside
the project. Examining the projects for source comments,
commit history and documentation may offer further insight
into license use.

We believe that there is scope for automation in detecting
violations and offering possible solutions to these problems.
Through the results of this study, we suggest two possible
solutions to counter violations – (i) by tweaking the overall
license of the project, (ii) by suggesting replacements for the
reused libraries under a different license. Both these solutions
can be integrated into the existing programmer productivity
toolchain, with advancements in code search engines that now
enable filtering of code on license. We are currently working
on a tool to achieve this.

ACKNOWLEDGMENTS

We are grateful to Alwyn Roshan Pais for his comments
and feedback on detecting code reuse. We would also like
to thank Gervase Markham and Clint Adams for useful
discussions on open source licensing. This work is supported
by a Microsoft Research India travel grant.

REFERENCES

[1] D. M. German and A. E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development,”
in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 188–198. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070520

[2] “License proliferation,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation

[3] “License proliferation report,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation-report

[4] “Busybox and the gpl prevail again - up-
dated 4xs,” accessed April, 2012. [Online]. Available:
http://www.groklaw.net/article.php?story=20100803132055210

[5] “Best buy, samsung, westinghouse, and eleven other brands
named in sflc lawsuit,” accessed April, 2012. [Online].
Available: http://www.softwarefreedom.org/news/2009/dec/14/busybox-
gpl-lawsuit/

[6] “Emacs license violation,” accessed April, 2012. [Online]. Available:
http://lists.gnu.org/archive/html/emacs-devel/2011-07/msg01155.html

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’03. New York, NY, USA: ACM, 2003, pp. 76–85. [Online].
Available: http://doi.acm.org/10.1145/872757.872770

[8] G. v. Krogh, S. Spaeth, and S. Haefliger, “Knowledge reuse in open
source software: An exploratory study of 15 open source projects,”
in Proceedings of the Proceedings of the 38th Annual Hawaii
International Conference on System Sciences - Volume 07, ser. HICSS
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
198.2–. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2005.378

[9] S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open
source software,” Manage. Sci., vol. 54, no. 1, pp. 180–193, Jan. 2008.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.1070.0748

[10] A. Mockus, “Large-scale code reuse in open source software,” in
Proceedings of the First International Workshop on Emerging Trends
in FLOSS Research and Development, ser. FLOSS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 7–. [Online]. Available:
http://dx.doi.org/10.1109/FLOSS.2007.10

[11] H.-F. Chang and A. Mockus, “Evaluation of source code copy
detection methods on freebsd,” in Proceedings of the 2008 international
working conference on Mining software repositories, ser. MSR ’08.
New York, NY, USA: ACM, 2008, pp. 61–66. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370766

[12] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code from
the internet,” Commun. ACM, vol. 54, no. 12, pp. 74–81, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2043174.2043193

[13] C. Brown, D. Barrera, and D. Deugo, “Figd: An open source
intellectual property violation detector,” Proceedings of the 21st
International Conference on Software Engineering Knowledge
Engineering SEKE2009, pp. 536–541, 2009. [Online]. Available:
http://scs.carleton.ca/ cbrown7/papers/seke09-figd.pdf

[14] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 63–
72. [Online]. Available: http://doi.acm.org/10.1145/1985441.1985453

[15] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2009.02.007

[16] “Open source document,” accessed April, 2012. [Online]. Available:
http://opensource.org/docs/osd

[17] “Open source license data,” accessed April, 2012. [Online]. Available:
http://osrc.blackducksoftware.com/data/licenses/

[18] “How to use the gpl licenses for your own software,” accessed April,
2012. [Online]. Available: http://www.gnu.org/licenses/gpl-howto.html

Code provider [provider activity] Code acceptor [acceptor activity]

Lufa-Lib [High] Micropendous [High], Embedded-Projects [High], Usb-Travis [High], Hiduino [Medium]

Arduino [High] Pushpak [Medium], Micropendous [High], Wireplant [Low], Easyrobot [Medium]

Libsquish [Medium] Libhplasma [Medium], Nvidia-Texture-Tools [Medium]

Guichan [Low] DB-Tins07 [Medium], DB-Speedhack07 [Medium], Naruto-Hand-Signs-Fighting [Low]

Upp-Mirror [High] Boxvivd [Medium], Upp-Mac [Low]

Portableproplib [Medium] Xbps [High]

Chipmunk-physics [Medium] Chipmunk-Space-Manager [Medium], Cocos2d-x [Medium], Cocos2d-iPhone [High]

Box2d [Low]
Quickanoid [Low], Emo-Framework [High], Upp-Mirror [High], Cocos2d-iPhone [High],

Cocos2d-x [Medium], Party-Family[Medium], Cocos2d-Android [Medium]

Skia [High] Cocos2d-x [Medium]

Cocos2d-iPhone [High] CCjoystick [Medium], Cocos2d-x [Medium], chipmunk-spacemanager [Medium]

Kissxml [Medium] Parallax-Scrolling-Videogame [Low], Xmppframework [High]

Cocoahttpserver [Medium] Runtimebrowser [High], Xmppframework [High]

Cocoaasyncsocket [High] Mjpeg-iPhone [Medium], Cocoahttpserver [Medium]

Cocoalumberjack [Medium] Cocoahttpserver [Medium]

Syphon-Framework [Medium] Syphon-Implemenatations [Medium]

Miranda [High]
Miranda-Twitter-Oauth [Medium], Mirandaimplugins [Low], Dbmmapmod [Medium],

Pboonplugins [Medium], Pescuma [Medium], Toptoolbar [None], Wi2geoplugin [None]

Mirandaimplugins [Low] Dezeath [Medium]

Juced [Medium] Ugen [Medium]

Gwen [High] Party-Family [Medium]

Msinttypes [Low]
Omega-Cronus [Low], Mockcpp [Medium], Soar [Medium], Networkpx [Medium], Ossbuild [High]

Sacd-Ripper [Medium], Foxpilot [Medium], Test-NG-PP [Medium], 3ceamu [High], Wagic [High]

Libjingle [High] Pescuma [Medium], Gtalkbot [High], Ipcamera-For-Android [Low]

Growl [High] Growlmail [High], Quicksynergy [Low], Sequel-Pro [High], Kaincode [Medium], Welly [High]

Gtm-Oauth [Medium] Etsycocoa [High]

Google-Toolbox-For-Mac [Medium] Precipitate [Medium], Update-Engine [Low], Mocean-Sdk-Ios [High], Blazingstars [Medium]

Codesuppository [Medium] Meshimport [Medium]

Gtm-Http-Fetcher [Medium]
Gtm-Oauth [Medium], Etsycocoa [High], Gtm-Oauth2 [Medium], Google-Api-Objectivec-Client [Medium],

Gdata-ObjectiveC-Client [High]

Gtm-Oauth2 [Medium] Google-Api-ObjectiveC-Client [Medium], Gdata-ObjectiveC-Client [High]

Gdata-Objectivec-Client [High] Update-Engine [Low], Precipitate [Medium], Google-Email-Uploader-Mac[Medium], Vidnik[Low]

Mockcpp [Medium] Test-NG-PP [Low]

Effocore [None] Effogpled [Low]

Googletest [Medium] Cpp-Library-Project-Template [Low], Easyrobot [Low], Party-Family [Low], Slimdx [High]

Support [High]
Winx [Low], Adlaird [Low], Avbin [Low], Postgres-Kit [High], Libdgnsc [Low],

Duplicate-Windows [Low], Doom-Android [Low]

Android-Wifi-Tether [High] Android-Wired-Tether [High]

Jmonkeyengine [High] Jme-Glsl-Shaders [Medium], Jmonkeyplatform-Contributions [Medium]

Jbox2d [High] Plar [Medium], Angry-Food [Low]

Siphon [High] Csipsimple [Medium]

Flvplayer [Medium] Khanacademy [High]

TABLE III
INSTANCES OF CODE REUSE IN THE SET OF PROJECTS

